Extensions 1→N→G→Q→1 with N=C2 and Q=M4(2).C4

Direct product G=N×Q with N=C2 and Q=M4(2).C4
dρLabelID
C2×M4(2).C432C2xM4(2).C4128,1647


Non-split extensions G=N.Q with N=C2 and Q=M4(2).C4
extensionφ:Q→Aut NdρLabelID
C2.1(M4(2).C4) = M4(2)⋊1C8central extension (φ=1)64C2.1(M4(2).C4)128,297
C2.2(M4(2).C4) = C24.7Q8central extension (φ=1)32C2.2(M4(2).C4)128,470
C2.3(M4(2).C4) = C8.6C42central extension (φ=1)64C2.3(M4(2).C4)128,510
C2.4(M4(2).C4) = C81M4(2)central stem extension (φ=1)64C2.4(M4(2).C4)128,301
C2.5(M4(2).C4) = C42.90D4central stem extension (φ=1)64C2.5(M4(2).C4)128,302
C2.6(M4(2).C4) = C42.91D4central stem extension (φ=1)64C2.6(M4(2).C4)128,303
C2.7(M4(2).C4) = C42.Q8central stem extension (φ=1)64C2.7(M4(2).C4)128,304
C2.8(M4(2).C4) = C24.9Q8central stem extension (φ=1)32C2.8(M4(2).C4)128,543
C2.9(M4(2).C4) = C42.104D4central stem extension (φ=1)64C2.9(M4(2).C4)128,570
C2.10(M4(2).C4) = C42.106D4central stem extension (φ=1)64C2.10(M4(2).C4)128,581
C2.11(M4(2).C4) = C24.10Q8central stem extension (φ=1)32C2.11(M4(2).C4)128,587
C2.12(M4(2).C4) = C42.430D4central stem extension (φ=1)64C2.12(M4(2).C4)128,682

׿
×
𝔽