extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4⋊D4)⋊1C2 = C23⋊2D8 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):1C2 | 128,731 |
(C2×C4⋊D4)⋊2C2 = C24.244C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):2C2 | 128,1139 |
(C2×C4⋊D4)⋊3C2 = C23.308C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):3C2 | 128,1140 |
(C2×C4⋊D4)⋊4C2 = C24⋊8D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):4C2 | 128,1142 |
(C2×C4⋊D4)⋊5C2 = C24.249C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):5C2 | 128,1146 |
(C2×C4⋊D4)⋊6C2 = C23.316C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):6C2 | 128,1148 |
(C2×C4⋊D4)⋊7C2 = C23.324C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):7C2 | 128,1156 |
(C2×C4⋊D4)⋊8C2 = C23.328C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):8C2 | 128,1160 |
(C2×C4⋊D4)⋊9C2 = C24.262C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):9C2 | 128,1162 |
(C2×C4⋊D4)⋊10C2 = C24.263C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):10C2 | 128,1163 |
(C2×C4⋊D4)⋊11C2 = C23.333C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):11C2 | 128,1165 |
(C2×C4⋊D4)⋊12C2 = C23.356C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):12C2 | 128,1188 |
(C2×C4⋊D4)⋊13C2 = C23.364C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):13C2 | 128,1196 |
(C2×C4⋊D4)⋊14C2 = C42⋊17D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):14C2 | 128,1267 |
(C2×C4⋊D4)⋊15C2 = C42⋊18D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):15C2 | 128,1269 |
(C2×C4⋊D4)⋊16C2 = C23.439C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):16C2 | 128,1271 |
(C2×C4⋊D4)⋊17C2 = C42⋊19D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):17C2 | 128,1272 |
(C2×C4⋊D4)⋊18C2 = C42⋊20D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):18C2 | 128,1273 |
(C2×C4⋊D4)⋊19C2 = C23.443C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):19C2 | 128,1275 |
(C2×C4⋊D4)⋊20C2 = C23.455C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):20C2 | 128,1287 |
(C2×C4⋊D4)⋊21C2 = C24.360C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):21C2 | 128,1347 |
(C2×C4⋊D4)⋊22C2 = C24⋊10D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):22C2 | 128,1349 |
(C2×C4⋊D4)⋊23C2 = C42⋊27D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):23C2 | 128,1351 |
(C2×C4⋊D4)⋊24C2 = C23.535C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):24C2 | 128,1367 |
(C2×C4⋊D4)⋊25C2 = C23.556C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):25C2 | 128,1388 |
(C2×C4⋊D4)⋊26C2 = C24.377C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):26C2 | 128,1393 |
(C2×C4⋊D4)⋊27C2 = C23.568C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):27C2 | 128,1400 |
(C2×C4⋊D4)⋊28C2 = C23.569C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):28C2 | 128,1401 |
(C2×C4⋊D4)⋊29C2 = C23.571C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):29C2 | 128,1403 |
(C2×C4⋊D4)⋊30C2 = C23.573C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):30C2 | 128,1405 |
(C2×C4⋊D4)⋊31C2 = C24.384C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):31C2 | 128,1407 |
(C2×C4⋊D4)⋊32C2 = C23.576C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):32C2 | 128,1408 |
(C2×C4⋊D4)⋊33C2 = C23.578C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):33C2 | 128,1410 |
(C2×C4⋊D4)⋊34C2 = C24.389C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):34C2 | 128,1414 |
(C2×C4⋊D4)⋊35C2 = C24.395C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):35C2 | 128,1420 |
(C2×C4⋊D4)⋊36C2 = C24.406C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):36C2 | 128,1431 |
(C2×C4⋊D4)⋊37C2 = C23.603C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):37C2 | 128,1435 |
(C2×C4⋊D4)⋊38C2 = C24.413C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):38C2 | 128,1446 |
(C2×C4⋊D4)⋊39C2 = C24.459C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):39C2 | 128,1545 |
(C2×C4⋊D4)⋊40C2 = C23.715C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):40C2 | 128,1547 |
(C2×C4⋊D4)⋊41C2 = C24⋊13D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):41C2 | 128,1579 |
(C2×C4⋊D4)⋊42C2 = C42⋊47D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):42C2 | 128,1588 |
(C2×C4⋊D4)⋊43C2 = C2×C22⋊D8 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):43C2 | 128,1728 |
(C2×C4⋊D4)⋊44C2 = C2×D4⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):44C2 | 128,1732 |
(C2×C4⋊D4)⋊45C2 = C24.105D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):45C2 | 128,1738 |
(C2×C4⋊D4)⋊46C2 = C2×C8⋊7D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):46C2 | 128,1780 |
(C2×C4⋊D4)⋊47C2 = C2×C8⋊2D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):47C2 | 128,1784 |
(C2×C4⋊D4)⋊48C2 = M4(2)⋊14D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):48C2 | 128,1787 |
(C2×C4⋊D4)⋊49C2 = C23⋊3D8 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):49C2 | 128,1918 |
(C2×C4⋊D4)⋊50C2 = C24.121D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):50C2 | 128,1920 |
(C2×C4⋊D4)⋊51C2 = C24.125D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):51C2 | 128,1924 |
(C2×C4⋊D4)⋊52C2 = C24.127D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):52C2 | 128,1926 |
(C2×C4⋊D4)⋊53C2 = C2×C23⋊3D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):53C2 | 128,2177 |
(C2×C4⋊D4)⋊54C2 = C2×C22.29C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):54C2 | 128,2178 |
(C2×C4⋊D4)⋊55C2 = C2×C22.31C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):55C2 | 128,2180 |
(C2×C4⋊D4)⋊56C2 = C2×C22.32C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):56C2 | 128,2182 |
(C2×C4⋊D4)⋊57C2 = C2×C22.34C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):57C2 | 128,2184 |
(C2×C4⋊D4)⋊58C2 = C2×D42 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):58C2 | 128,2194 |
(C2×C4⋊D4)⋊59C2 = C2×D4⋊5D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):59C2 | 128,2195 |
(C2×C4⋊D4)⋊60C2 = C2×D4⋊6D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):60C2 | 128,2196 |
(C2×C4⋊D4)⋊61C2 = C2×Q8⋊5D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):61C2 | 128,2197 |
(C2×C4⋊D4)⋊62C2 = C2×Q8⋊6D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):62C2 | 128,2199 |
(C2×C4⋊D4)⋊63C2 = C2×C22.47C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):63C2 | 128,2203 |
(C2×C4⋊D4)⋊64C2 = C2×C22.49C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):64C2 | 128,2205 |
(C2×C4⋊D4)⋊65C2 = C22.77C25 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):65C2 | 128,2220 |
(C2×C4⋊D4)⋊66C2 = C22.83C25 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):66C2 | 128,2226 |
(C2×C4⋊D4)⋊67C2 = C4⋊2+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):67C2 | 128,2228 |
(C2×C4⋊D4)⋊68C2 = C22.94C25 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):68C2 | 128,2237 |
(C2×C4⋊D4)⋊69C2 = C22.108C25 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):69C2 | 128,2251 |
(C2×C4⋊D4)⋊70C2 = C2×C22.54C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):70C2 | 128,2257 |
(C2×C4⋊D4)⋊71C2 = C2×C22.56C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4):71C2 | 128,2259 |
(C2×C4⋊D4)⋊72C2 = C22.123C25 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):72C2 | 128,2266 |
(C2×C4⋊D4)⋊73C2 = C22.125C25 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):73C2 | 128,2268 |
(C2×C4⋊D4)⋊74C2 = C22.126C25 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):74C2 | 128,2269 |
(C2×C4⋊D4)⋊75C2 = C22.131C25 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4):75C2 | 128,2274 |
(C2×C4⋊D4)⋊76C2 = C2×C22.19C24 | φ: trivial image | 32 | | (C2xC4:D4):76C2 | 128,2167 |
(C2×C4⋊D4)⋊77C2 = C2×C22.26C24 | φ: trivial image | 64 | | (C2xC4:D4):77C2 | 128,2174 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4⋊D4).1C2 = C24.(C2×C4) | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4).1C2 | 128,203 |
(C2×C4⋊D4).2C2 = C2×C22.SD16 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4).2C2 | 128,230 |
(C2×C4⋊D4).3C2 = C24.54D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4).3C2 | 128,239 |
(C2×C4⋊D4).4C2 = C24.56D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4).4C2 | 128,242 |
(C2×C4⋊D4).5C2 = C24.60D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4).5C2 | 128,251 |
(C2×C4⋊D4).6C2 = C23.38D8 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).6C2 | 128,606 |
(C2×C4⋊D4).7C2 = C24.74D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).7C2 | 128,607 |
(C2×C4⋊D4).8C2 = C23.23D8 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).8C2 | 128,625 |
(C2×C4⋊D4).9C2 = C24.76D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).9C2 | 128,627 |
(C2×C4⋊D4).10C2 = M4(2)⋊20D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4).10C2 | 128,632 |
(C2×C4⋊D4).11C2 = C24.175C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4).11C2 | 128,696 |
(C2×C4⋊D4).12C2 = C23⋊3SD16 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).12C2 | 128,732 |
(C2×C4⋊D4).13C2 = C24.83D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).13C2 | 128,765 |
(C2×C4⋊D4).14C2 = C24.84D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).14C2 | 128,766 |
(C2×C4⋊D4).15C2 = C42⋊13D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).15C2 | 128,1056 |
(C2×C4⋊D4).16C2 = C24.198C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).16C2 | 128,1057 |
(C2×C4⋊D4).17C2 = C23.215C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).17C2 | 128,1065 |
(C2×C4⋊D4).18C2 = C24.215C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).18C2 | 128,1093 |
(C2×C4⋊D4).19C2 = C24.217C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).19C2 | 128,1095 |
(C2×C4⋊D4).20C2 = C24.218C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).20C2 | 128,1096 |
(C2×C4⋊D4).21C2 = C23.259C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).21C2 | 128,1109 |
(C2×C4⋊D4).22C2 = C24.254C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).22C2 | 128,1152 |
(C2×C4⋊D4).23C2 = C23.322C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).23C2 | 128,1154 |
(C2×C4⋊D4).24C2 = C24.258C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).24C2 | 128,1157 |
(C2×C4⋊D4).25C2 = C24.259C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).25C2 | 128,1158 |
(C2×C4⋊D4).26C2 = C23.327C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).26C2 | 128,1159 |
(C2×C4⋊D4).27C2 = C24.565C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).27C2 | 128,1168 |
(C2×C4⋊D4).28C2 = C24.269C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).28C2 | 128,1175 |
(C2×C4⋊D4).29C2 = C23.344C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).29C2 | 128,1176 |
(C2×C4⋊D4).30C2 = C24.293C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).30C2 | 128,1208 |
(C2×C4⋊D4).31C2 = C23.390C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).31C2 | 128,1222 |
(C2×C4⋊D4).32C2 = C23.391C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).32C2 | 128,1223 |
(C2×C4⋊D4).33C2 = C23.400C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).33C2 | 128,1232 |
(C2×C4⋊D4).34C2 = C23.401C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).34C2 | 128,1233 |
(C2×C4⋊D4).35C2 = C23.404C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).35C2 | 128,1236 |
(C2×C4⋊D4).36C2 = C24.331C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).36C2 | 128,1291 |
(C2×C4⋊D4).37C2 = C23.491C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).37C2 | 128,1323 |
(C2×C4⋊D4).38C2 = C24.587C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).38C2 | 128,1350 |
(C2×C4⋊D4).39C2 = C42⋊28D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).39C2 | 128,1352 |
(C2×C4⋊D4).40C2 = C23.524C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).40C2 | 128,1356 |
(C2×C4⋊D4).41C2 = C24.592C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).41C2 | 128,1371 |
(C2×C4⋊D4).42C2 = C23.572C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).42C2 | 128,1404 |
(C2×C4⋊D4).43C2 = C23.581C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).43C2 | 128,1413 |
(C2×C4⋊D4).44C2 = C24.393C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).44C2 | 128,1418 |
(C2×C4⋊D4).45C2 = C23.591C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).45C2 | 128,1423 |
(C2×C4⋊D4).46C2 = C24.407C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).46C2 | 128,1433 |
(C2×C4⋊D4).47C2 = C23.608C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).47C2 | 128,1440 |
(C2×C4⋊D4).48C2 = C23.611C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).48C2 | 128,1443 |
(C2×C4⋊D4).49C2 = C23.716C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).49C2 | 128,1548 |
(C2×C4⋊D4).50C2 = C42⋊46D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).50C2 | 128,1582 |
(C2×C4⋊D4).51C2 = C24.598C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).51C2 | 128,1586 |
(C2×C4⋊D4).52C2 = C2×Q8⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).52C2 | 128,1730 |
(C2×C4⋊D4).53C2 = C2×C8⋊8D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).53C2 | 128,1779 |
(C2×C4⋊D4).54C2 = C2×C8⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).54C2 | 128,1783 |
(C2×C4⋊D4).55C2 = C2×C22.D8 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).55C2 | 128,1817 |
(C2×C4⋊D4).56C2 = C2×C23.19D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).56C2 | 128,1819 |
(C2×C4⋊D4).57C2 = C2×C23.46D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).57C2 | 128,1821 |
(C2×C4⋊D4).58C2 = C24.117D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4).58C2 | 128,1826 |
(C2×C4⋊D4).59C2 = C23⋊4SD16 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4).59C2 | 128,1919 |
(C2×C4⋊D4).60C2 = C24.126D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 32 | | (C2xC4:D4).60C2 | 128,1925 |
(C2×C4⋊D4).61C2 = C2×C22.33C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).61C2 | 128,2183 |
(C2×C4⋊D4).62C2 = C2×C22.36C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊D4 | 64 | | (C2xC4:D4).62C2 | 128,2186 |
(C2×C4⋊D4).63C2 = C4×C4⋊D4 | φ: trivial image | 64 | | (C2xC4:D4).63C2 | 128,1032 |
(C2×C4⋊D4).64C2 = C2×C23.36C23 | φ: trivial image | 64 | | (C2xC4:D4).64C2 | 128,2171 |