direct product, cyclic, abelian, monomial
Aliases: C135, also denoted Z135, SmallGroup(135,1)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C135 |
C1 — C135 |
C1 — C135 |
Generators and relations for C135
G = < a | a135=1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135)
G:=sub<Sym(135)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)]])
C135 is a maximal subgroup of
D135
135 conjugacy classes
class | 1 | 3A | 3B | 5A | 5B | 5C | 5D | 9A | ··· | 9F | 15A | ··· | 15H | 27A | ··· | 27R | 45A | ··· | 45X | 135A | ··· | 135BT |
order | 1 | 3 | 3 | 5 | 5 | 5 | 5 | 9 | ··· | 9 | 15 | ··· | 15 | 27 | ··· | 27 | 45 | ··· | 45 | 135 | ··· | 135 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
135 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | |||||||
image | C1 | C3 | C5 | C9 | C15 | C27 | C45 | C135 |
kernel | C135 | C45 | C27 | C15 | C9 | C5 | C3 | C1 |
# reps | 1 | 2 | 4 | 6 | 8 | 18 | 24 | 72 |
Matrix representation of C135 ►in GL1(𝔽271) generated by
163 |
G:=sub<GL(1,GF(271))| [163] >;
C135 in GAP, Magma, Sage, TeX
C_{135}
% in TeX
G:=Group("C135");
// GroupNames label
G:=SmallGroup(135,1);
// by ID
G=gap.SmallGroup(135,1);
# by ID
G:=PCGroup([4,-3,-5,-3,-3,60,46]);
// Polycyclic
G:=Group<a|a^135=1>;
// generators/relations
Export