Copied to
clipboard

G = C3×C51order 153 = 32·17

Abelian group of type [3,51]

direct product, abelian, monomial, 3-elementary

Aliases: C3×C51, SmallGroup(153,2)

Series: Derived Chief Lower central Upper central

C1 — C3×C51
C1C17C51 — C3×C51
C1 — C3×C51
C1 — C3×C51

Generators and relations for C3×C51
 G = < a,b | a3=b51=1, ab=ba >


Smallest permutation representation of C3×C51
Regular action on 153 points
Generators in S153
(1 126 52)(2 127 53)(3 128 54)(4 129 55)(5 130 56)(6 131 57)(7 132 58)(8 133 59)(9 134 60)(10 135 61)(11 136 62)(12 137 63)(13 138 64)(14 139 65)(15 140 66)(16 141 67)(17 142 68)(18 143 69)(19 144 70)(20 145 71)(21 146 72)(22 147 73)(23 148 74)(24 149 75)(25 150 76)(26 151 77)(27 152 78)(28 153 79)(29 103 80)(30 104 81)(31 105 82)(32 106 83)(33 107 84)(34 108 85)(35 109 86)(36 110 87)(37 111 88)(38 112 89)(39 113 90)(40 114 91)(41 115 92)(42 116 93)(43 117 94)(44 118 95)(45 119 96)(46 120 97)(47 121 98)(48 122 99)(49 123 100)(50 124 101)(51 125 102)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)(103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153)

G:=sub<Sym(153)| (1,126,52)(2,127,53)(3,128,54)(4,129,55)(5,130,56)(6,131,57)(7,132,58)(8,133,59)(9,134,60)(10,135,61)(11,136,62)(12,137,63)(13,138,64)(14,139,65)(15,140,66)(16,141,67)(17,142,68)(18,143,69)(19,144,70)(20,145,71)(21,146,72)(22,147,73)(23,148,74)(24,149,75)(25,150,76)(26,151,77)(27,152,78)(28,153,79)(29,103,80)(30,104,81)(31,105,82)(32,106,83)(33,107,84)(34,108,85)(35,109,86)(36,110,87)(37,111,88)(38,112,89)(39,113,90)(40,114,91)(41,115,92)(42,116,93)(43,117,94)(44,118,95)(45,119,96)(46,120,97)(47,121,98)(48,122,99)(49,123,100)(50,124,101)(51,125,102), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153)>;

G:=Group( (1,126,52)(2,127,53)(3,128,54)(4,129,55)(5,130,56)(6,131,57)(7,132,58)(8,133,59)(9,134,60)(10,135,61)(11,136,62)(12,137,63)(13,138,64)(14,139,65)(15,140,66)(16,141,67)(17,142,68)(18,143,69)(19,144,70)(20,145,71)(21,146,72)(22,147,73)(23,148,74)(24,149,75)(25,150,76)(26,151,77)(27,152,78)(28,153,79)(29,103,80)(30,104,81)(31,105,82)(32,106,83)(33,107,84)(34,108,85)(35,109,86)(36,110,87)(37,111,88)(38,112,89)(39,113,90)(40,114,91)(41,115,92)(42,116,93)(43,117,94)(44,118,95)(45,119,96)(46,120,97)(47,121,98)(48,122,99)(49,123,100)(50,124,101)(51,125,102), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153) );

G=PermutationGroup([[(1,126,52),(2,127,53),(3,128,54),(4,129,55),(5,130,56),(6,131,57),(7,132,58),(8,133,59),(9,134,60),(10,135,61),(11,136,62),(12,137,63),(13,138,64),(14,139,65),(15,140,66),(16,141,67),(17,142,68),(18,143,69),(19,144,70),(20,145,71),(21,146,72),(22,147,73),(23,148,74),(24,149,75),(25,150,76),(26,151,77),(27,152,78),(28,153,79),(29,103,80),(30,104,81),(31,105,82),(32,106,83),(33,107,84),(34,108,85),(35,109,86),(36,110,87),(37,111,88),(38,112,89),(39,113,90),(40,114,91),(41,115,92),(42,116,93),(43,117,94),(44,118,95),(45,119,96),(46,120,97),(47,121,98),(48,122,99),(49,123,100),(50,124,101),(51,125,102)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102),(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153)]])

C3×C51 is a maximal subgroup of   C3⋊D51

153 conjugacy classes

class 1 3A···3H17A···17P51A···51DX
order13···317···1751···51
size11···11···11···1

153 irreducible representations

dim1111
type+
imageC1C3C17C51
kernelC3×C51C51C32C3
# reps1816128

Matrix representation of C3×C51 in GL2(𝔽103) generated by

10
056
,
680
0100
G:=sub<GL(2,GF(103))| [1,0,0,56],[68,0,0,100] >;

C3×C51 in GAP, Magma, Sage, TeX

C_3\times C_{51}
% in TeX

G:=Group("C3xC51");
// GroupNames label

G:=SmallGroup(153,2);
// by ID

G=gap.SmallGroup(153,2);
# by ID

G:=PCGroup([3,-3,-3,-17]);
// Polycyclic

G:=Group<a,b|a^3=b^51=1,a*b=b*a>;
// generators/relations

Export

Subgroup lattice of C3×C51 in TeX

׿
×
𝔽