extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C3xD4) = C3xC24:C2 | φ: C3xD4/C12 → C2 ⊆ Aut C6 | 48 | 2 | C6.1(C3xD4) | 144,71 |
C6.2(C3xD4) = C3xD24 | φ: C3xD4/C12 → C2 ⊆ Aut C6 | 48 | 2 | C6.2(C3xD4) | 144,72 |
C6.3(C3xD4) = C3xDic12 | φ: C3xD4/C12 → C2 ⊆ Aut C6 | 48 | 2 | C6.3(C3xD4) | 144,73 |
C6.4(C3xD4) = C3xC4:Dic3 | φ: C3xD4/C12 → C2 ⊆ Aut C6 | 48 | | C6.4(C3xD4) | 144,78 |
C6.5(C3xD4) = C3xDic3:C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C6 | 48 | | C6.5(C3xD4) | 144,77 |
C6.6(C3xD4) = C3xD6:C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C6 | 48 | | C6.6(C3xD4) | 144,79 |
C6.7(C3xD4) = C3xD4:S3 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C6 | 24 | 4 | C6.7(C3xD4) | 144,80 |
C6.8(C3xD4) = C3xD4.S3 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C6 | 24 | 4 | C6.8(C3xD4) | 144,81 |
C6.9(C3xD4) = C3xQ8:2S3 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C6 | 48 | 4 | C6.9(C3xD4) | 144,82 |
C6.10(C3xD4) = C3xC3:Q16 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C6 | 48 | 4 | C6.10(C3xD4) | 144,83 |
C6.11(C3xD4) = C3xC6.D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C6 | 24 | | C6.11(C3xD4) | 144,84 |
C6.12(C3xD4) = C9xC22:C4 | central extension (φ=1) | 72 | | C6.12(C3xD4) | 144,21 |
C6.13(C3xD4) = C9xC4:C4 | central extension (φ=1) | 144 | | C6.13(C3xD4) | 144,22 |
C6.14(C3xD4) = C9xD8 | central extension (φ=1) | 72 | 2 | C6.14(C3xD4) | 144,25 |
C6.15(C3xD4) = C9xSD16 | central extension (φ=1) | 72 | 2 | C6.15(C3xD4) | 144,26 |
C6.16(C3xD4) = C9xQ16 | central extension (φ=1) | 144 | 2 | C6.16(C3xD4) | 144,27 |
C6.17(C3xD4) = D4xC18 | central extension (φ=1) | 72 | | C6.17(C3xD4) | 144,48 |
C6.18(C3xD4) = C32xC22:C4 | central extension (φ=1) | 72 | | C6.18(C3xD4) | 144,102 |
C6.19(C3xD4) = C32xC4:C4 | central extension (φ=1) | 144 | | C6.19(C3xD4) | 144,103 |
C6.20(C3xD4) = C32xD8 | central extension (φ=1) | 72 | | C6.20(C3xD4) | 144,106 |
C6.21(C3xD4) = C32xSD16 | central extension (φ=1) | 72 | | C6.21(C3xD4) | 144,107 |
C6.22(C3xD4) = C32xQ16 | central extension (φ=1) | 144 | | C6.22(C3xD4) | 144,108 |