Extensions 1→N→G→Q→1 with N=S3×C6 and Q=C4

Direct product G=N×Q with N=S3×C6 and Q=C4
dρLabelID
S3×C2×C1248S3xC2xC12144,159

Semidirect products G=N:Q with N=S3×C6 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3×C6)⋊1C4 = D6⋊Dic3φ: C4/C2C2 ⊆ Out S3×C648(S3xC6):1C4144,64
(S3×C6)⋊2C4 = C3×D6⋊C4φ: C4/C2C2 ⊆ Out S3×C648(S3xC6):2C4144,79
(S3×C6)⋊3C4 = C2×S3×Dic3φ: C4/C2C2 ⊆ Out S3×C648(S3xC6):3C4144,146

Non-split extensions G=N.Q with N=S3×C6 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3×C6).1C4 = S3×C3⋊C8φ: C4/C2C2 ⊆ Out S3×C6484(S3xC6).1C4144,52
(S3×C6).2C4 = D6.Dic3φ: C4/C2C2 ⊆ Out S3×C6484(S3xC6).2C4144,54
(S3×C6).3C4 = C3×C8⋊S3φ: C4/C2C2 ⊆ Out S3×C6482(S3xC6).3C4144,70
(S3×C6).4C4 = S3×C24φ: trivial image482(S3xC6).4C4144,69

׿
×
𝔽