extension | φ:Q→Aut N | d | ρ | Label | ID |
(C6xC12).1C2 = C3xDic3:C4 | φ: C2/C1 → C2 ⊆ Aut C6xC12 | 48 | | (C6xC12).1C2 | 144,77 |
(C6xC12).2C2 = C6.Dic6 | φ: C2/C1 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).2C2 | 144,93 |
(C6xC12).3C2 = C32xC4:C4 | φ: C2/C1 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).3C2 | 144,103 |
(C6xC12).4C2 = C12:Dic3 | φ: C2/C1 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).4C2 | 144,94 |
(C6xC12).5C2 = C2xC32:4Q8 | φ: C2/C1 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).5C2 | 144,168 |
(C6xC12).6C2 = C12.58D6 | φ: C2/C1 → C2 ⊆ Aut C6xC12 | 72 | | (C6xC12).6C2 | 144,91 |
(C6xC12).7C2 = C3xC4.Dic3 | φ: C2/C1 → C2 ⊆ Aut C6xC12 | 24 | 2 | (C6xC12).7C2 | 144,75 |
(C6xC12).8C2 = C3xC4:Dic3 | φ: C2/C1 → C2 ⊆ Aut C6xC12 | 48 | | (C6xC12).8C2 | 144,78 |
(C6xC12).9C2 = C6xDic6 | φ: C2/C1 → C2 ⊆ Aut C6xC12 | 48 | | (C6xC12).9C2 | 144,158 |
(C6xC12).10C2 = C6xC3:C8 | φ: C2/C1 → C2 ⊆ Aut C6xC12 | 48 | | (C6xC12).10C2 | 144,74 |
(C6xC12).11C2 = Dic3xC12 | φ: C2/C1 → C2 ⊆ Aut C6xC12 | 48 | | (C6xC12).11C2 | 144,76 |
(C6xC12).12C2 = C2xC32:4C8 | φ: C2/C1 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).12C2 | 144,90 |
(C6xC12).13C2 = C4xC3:Dic3 | φ: C2/C1 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).13C2 | 144,92 |
(C6xC12).14C2 = C32xM4(2) | φ: C2/C1 → C2 ⊆ Aut C6xC12 | 72 | | (C6xC12).14C2 | 144,105 |
(C6xC12).15C2 = Q8xC3xC6 | φ: C2/C1 → C2 ⊆ Aut C6xC12 | 144 | | (C6xC12).15C2 | 144,180 |