Extensions 1→N→G→Q→1 with N=C2×C4 and Q=C3×S3

Direct product G=N×Q with N=C2×C4 and Q=C3×S3
dρLabelID
S3×C2×C1248S3xC2xC12144,159

Semidirect products G=N:Q with N=C2×C4 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1(C3×S3) = C3×D6⋊C4φ: C3×S3/C32C2 ⊆ Aut C2×C448(C2xC4):1(C3xS3)144,79
(C2×C4)⋊2(C3×S3) = C6×D12φ: C3×S3/C32C2 ⊆ Aut C2×C448(C2xC4):2(C3xS3)144,160
(C2×C4)⋊3(C3×S3) = C3×C4○D12φ: C3×S3/C32C2 ⊆ Aut C2×C4242(C2xC4):3(C3xS3)144,161

Non-split extensions G=N.Q with N=C2×C4 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
(C2×C4).1(C3×S3) = C3×Dic3⋊C4φ: C3×S3/C32C2 ⊆ Aut C2×C448(C2xC4).1(C3xS3)144,77
(C2×C4).2(C3×S3) = C3×C4.Dic3φ: C3×S3/C32C2 ⊆ Aut C2×C4242(C2xC4).2(C3xS3)144,75
(C2×C4).3(C3×S3) = C3×C4⋊Dic3φ: C3×S3/C32C2 ⊆ Aut C2×C448(C2xC4).3(C3xS3)144,78
(C2×C4).4(C3×S3) = C6×Dic6φ: C3×S3/C32C2 ⊆ Aut C2×C448(C2xC4).4(C3xS3)144,158
(C2×C4).5(C3×S3) = C6×C3⋊C8central extension (φ=1)48(C2xC4).5(C3xS3)144,74
(C2×C4).6(C3×S3) = Dic3×C12central extension (φ=1)48(C2xC4).6(C3xS3)144,76

׿
×
𝔽