Extensions 1→N→G→Q→1 with N=C4 and Q=C2×C18

Direct product G=N×Q with N=C4 and Q=C2×C18
dρLabelID
C22×C36144C2^2xC36144,47

Semidirect products G=N:Q with N=C4 and Q=C2×C18
extensionφ:Q→Aut NdρLabelID
C4⋊(C2×C18) = D4×C18φ: C2×C18/C18C2 ⊆ Aut C472C4:(C2xC18)144,48

Non-split extensions G=N.Q with N=C4 and Q=C2×C18
extensionφ:Q→Aut NdρLabelID
C4.1(C2×C18) = C9×D8φ: C2×C18/C18C2 ⊆ Aut C4722C4.1(C2xC18)144,25
C4.2(C2×C18) = C9×SD16φ: C2×C18/C18C2 ⊆ Aut C4722C4.2(C2xC18)144,26
C4.3(C2×C18) = C9×Q16φ: C2×C18/C18C2 ⊆ Aut C41442C4.3(C2xC18)144,27
C4.4(C2×C18) = Q8×C18φ: C2×C18/C18C2 ⊆ Aut C4144C4.4(C2xC18)144,49
C4.5(C2×C18) = C9×M4(2)central extension (φ=1)722C4.5(C2xC18)144,24
C4.6(C2×C18) = C9×C4○D4central extension (φ=1)722C4.6(C2xC18)144,50

׿
×
𝔽