extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC6).Dic3 = C6.S4 | φ: Dic3/C2 → S3 ⊆ Aut C2xC6 | 36 | 6- | (C2xC6).Dic3 | 144,33 |
(C2xC6).2Dic3 = C3xC4.Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C2xC6 | 24 | 2 | (C2xC6).2Dic3 | 144,75 |
(C2xC6).3Dic3 = C2xC9:C8 | φ: Dic3/C6 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).3Dic3 | 144,9 |
(C2xC6).4Dic3 = C4.Dic9 | φ: Dic3/C6 → C2 ⊆ Aut C2xC6 | 72 | 2 | (C2xC6).4Dic3 | 144,10 |
(C2xC6).5Dic3 = C18.D4 | φ: Dic3/C6 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).5Dic3 | 144,19 |
(C2xC6).6Dic3 = C22xDic9 | φ: Dic3/C6 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).6Dic3 | 144,45 |
(C2xC6).7Dic3 = C2xC32:4C8 | φ: Dic3/C6 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).7Dic3 | 144,90 |
(C2xC6).8Dic3 = C12.58D6 | φ: Dic3/C6 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).8Dic3 | 144,91 |
(C2xC6).9Dic3 = C6xC3:C8 | central extension (φ=1) | 48 | | (C2xC6).9Dic3 | 144,74 |