Extensions 1→N→G→Q→1 with N=C3×Dic3 and Q=C4

Direct product G=N×Q with N=C3×Dic3 and Q=C4
dρLabelID
Dic3×C1248Dic3xC12144,76

Semidirect products G=N:Q with N=C3×Dic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×Dic3)⋊1C4 = Dic3⋊Dic3φ: C4/C2C2 ⊆ Out C3×Dic348(C3xDic3):1C4144,66
(C3×Dic3)⋊2C4 = Dic32φ: C4/C2C2 ⊆ Out C3×Dic348(C3xDic3):2C4144,63
(C3×Dic3)⋊3C4 = C3×Dic3⋊C4φ: C4/C2C2 ⊆ Out C3×Dic348(C3xDic3):3C4144,77

Non-split extensions G=N.Q with N=C3×Dic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×Dic3).1C4 = D6.Dic3φ: C4/C2C2 ⊆ Out C3×Dic3484(C3xDic3).1C4144,54
(C3×Dic3).2C4 = S3×C3⋊C8φ: C4/C2C2 ⊆ Out C3×Dic3484(C3xDic3).2C4144,52
(C3×Dic3).3C4 = C3×C8⋊S3φ: C4/C2C2 ⊆ Out C3×Dic3482(C3xDic3).3C4144,70
(C3×Dic3).4C4 = S3×C24φ: trivial image482(C3xDic3).4C4144,69

׿
×
𝔽