Extensions 1→N→G→Q→1 with N=C6 and Q=C2×Dic3

Direct product G=N×Q with N=C6 and Q=C2×Dic3
dρLabelID
Dic3×C2×C648Dic3xC2xC6144,166

Semidirect products G=N:Q with N=C6 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
C61(C2×Dic3) = C2×S3×Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C648C6:1(C2xDic3)144,146
C62(C2×Dic3) = C22×C3⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C6144C6:2(C2xDic3)144,176

Non-split extensions G=N.Q with N=C6 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
C6.1(C2×Dic3) = S3×C3⋊C8φ: C2×Dic3/Dic3C2 ⊆ Aut C6484C6.1(C2xDic3)144,52
C6.2(C2×Dic3) = D6.Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C6484C6.2(C2xDic3)144,54
C6.3(C2×Dic3) = Dic32φ: C2×Dic3/Dic3C2 ⊆ Aut C648C6.3(C2xDic3)144,63
C6.4(C2×Dic3) = D6⋊Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C648C6.4(C2xDic3)144,64
C6.5(C2×Dic3) = Dic3⋊Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C648C6.5(C2xDic3)144,66
C6.6(C2×Dic3) = C2×C9⋊C8φ: C2×Dic3/C2×C6C2 ⊆ Aut C6144C6.6(C2xDic3)144,9
C6.7(C2×Dic3) = C4.Dic9φ: C2×Dic3/C2×C6C2 ⊆ Aut C6722C6.7(C2xDic3)144,10
C6.8(C2×Dic3) = C4×Dic9φ: C2×Dic3/C2×C6C2 ⊆ Aut C6144C6.8(C2xDic3)144,11
C6.9(C2×Dic3) = C4⋊Dic9φ: C2×Dic3/C2×C6C2 ⊆ Aut C6144C6.9(C2xDic3)144,13
C6.10(C2×Dic3) = C18.D4φ: C2×Dic3/C2×C6C2 ⊆ Aut C672C6.10(C2xDic3)144,19
C6.11(C2×Dic3) = C22×Dic9φ: C2×Dic3/C2×C6C2 ⊆ Aut C6144C6.11(C2xDic3)144,45
C6.12(C2×Dic3) = C2×C324C8φ: C2×Dic3/C2×C6C2 ⊆ Aut C6144C6.12(C2xDic3)144,90
C6.13(C2×Dic3) = C12.58D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C672C6.13(C2xDic3)144,91
C6.14(C2×Dic3) = C4×C3⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C6144C6.14(C2xDic3)144,92
C6.15(C2×Dic3) = C12⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C6144C6.15(C2xDic3)144,94
C6.16(C2×Dic3) = C625C4φ: C2×Dic3/C2×C6C2 ⊆ Aut C672C6.16(C2xDic3)144,100
C6.17(C2×Dic3) = C6×C3⋊C8central extension (φ=1)48C6.17(C2xDic3)144,74
C6.18(C2×Dic3) = C3×C4.Dic3central extension (φ=1)242C6.18(C2xDic3)144,75
C6.19(C2×Dic3) = Dic3×C12central extension (φ=1)48C6.19(C2xDic3)144,76
C6.20(C2×Dic3) = C3×C4⋊Dic3central extension (φ=1)48C6.20(C2xDic3)144,78
C6.21(C2×Dic3) = C3×C6.D4central extension (φ=1)24C6.21(C2xDic3)144,84

׿
×
𝔽