Extensions 1→N→G→Q→1 with N=C3×C6 and Q=Q8

Direct product G=N×Q with N=C3×C6 and Q=Q8
dρLabelID
Q8×C3×C6144Q8xC3xC6144,180

Semidirect products G=N:Q with N=C3×C6 and Q=Q8
extensionφ:Q→Aut NdρLabelID
(C3×C6)⋊Q8 = C2×PSU3(𝔽2)φ: Q8/C1Q8 ⊆ Aut C3×C6188+(C3xC6):Q8144,187
(C3×C6)⋊2Q8 = C2×C322Q8φ: Q8/C2C22 ⊆ Aut C3×C648(C3xC6):2Q8144,152
(C3×C6)⋊3Q8 = C6×Dic6φ: Q8/C4C2 ⊆ Aut C3×C648(C3xC6):3Q8144,158
(C3×C6)⋊4Q8 = C2×C324Q8φ: Q8/C4C2 ⊆ Aut C3×C6144(C3xC6):4Q8144,168

Non-split extensions G=N.Q with N=C3×C6 and Q=Q8
extensionφ:Q→Aut NdρLabelID
(C3×C6).Q8 = C2.PSU3(𝔽2)φ: Q8/C1Q8 ⊆ Aut C3×C6248+(C3xC6).Q8144,120
(C3×C6).2Q8 = Dic3⋊Dic3φ: Q8/C2C22 ⊆ Aut C3×C648(C3xC6).2Q8144,66
(C3×C6).3Q8 = C62.C22φ: Q8/C2C22 ⊆ Aut C3×C648(C3xC6).3Q8144,67
(C3×C6).4Q8 = C3×Dic3⋊C4φ: Q8/C4C2 ⊆ Aut C3×C648(C3xC6).4Q8144,77
(C3×C6).5Q8 = C3×C4⋊Dic3φ: Q8/C4C2 ⊆ Aut C3×C648(C3xC6).5Q8144,78
(C3×C6).6Q8 = C6.Dic6φ: Q8/C4C2 ⊆ Aut C3×C6144(C3xC6).6Q8144,93
(C3×C6).7Q8 = C12⋊Dic3φ: Q8/C4C2 ⊆ Aut C3×C6144(C3xC6).7Q8144,94
(C3×C6).8Q8 = C32×C4⋊C4central extension (φ=1)144(C3xC6).8Q8144,103

׿
×
𝔽