Extensions 1→N→G→Q→1 with N=C2xD4 and Q=C10

Direct product G=NxQ with N=C2xD4 and Q=C10
dρLabelID
D4xC2xC1080D4xC2xC10160,229

Semidirect products G=N:Q with N=C2xD4 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2xD4):1C10 = C5xC22wrC2φ: C10/C5C2 ⊆ Out C2xD440(C2xD4):1C10160,181
(C2xD4):2C10 = C5xC4:D4φ: C10/C5C2 ⊆ Out C2xD480(C2xD4):2C10160,182
(C2xD4):3C10 = C5xC4:1D4φ: C10/C5C2 ⊆ Out C2xD480(C2xD4):3C10160,188
(C2xD4):4C10 = C10xD8φ: C10/C5C2 ⊆ Out C2xD480(C2xD4):4C10160,193
(C2xD4):5C10 = C5xC8:C22φ: C10/C5C2 ⊆ Out C2xD4404(C2xD4):5C10160,197
(C2xD4):6C10 = C5x2+ 1+4φ: C10/C5C2 ⊆ Out C2xD4404(C2xD4):6C10160,232
(C2xD4):7C10 = C10xC4oD4φ: trivial image80(C2xD4):7C10160,231

Non-split extensions G=N.Q with N=C2xD4 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2xD4).1C10 = C5xC23:C4φ: C10/C5C2 ⊆ Out C2xD4404(C2xD4).1C10160,49
(C2xD4).2C10 = C5xC4.D4φ: C10/C5C2 ⊆ Out C2xD4404(C2xD4).2C10160,50
(C2xD4).3C10 = C5xD4:C4φ: C10/C5C2 ⊆ Out C2xD480(C2xD4).3C10160,52
(C2xD4).4C10 = C5xC22.D4φ: C10/C5C2 ⊆ Out C2xD480(C2xD4).4C10160,184
(C2xD4).5C10 = C5xC4.4D4φ: C10/C5C2 ⊆ Out C2xD480(C2xD4).5C10160,185
(C2xD4).6C10 = C10xSD16φ: C10/C5C2 ⊆ Out C2xD480(C2xD4).6C10160,194
(C2xD4).7C10 = D4xC20φ: trivial image80(C2xD4).7C10160,179

׿
x
:
Z
F
o
wr
Q
<