Extensions 1→N→G→Q→1 with N=C2xQ8 and Q=C10

Direct product G=NxQ with N=C2xQ8 and Q=C10
dρLabelID
Q8xC2xC10160Q8xC2xC10160,230

Semidirect products G=N:Q with N=C2xQ8 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2xQ8):1C10 = C5xC22:Q8φ: C10/C5C2 ⊆ Out C2xQ880(C2xQ8):1C10160,183
(C2xQ8):2C10 = C5xC4.4D4φ: C10/C5C2 ⊆ Out C2xQ880(C2xQ8):2C10160,185
(C2xQ8):3C10 = C10xSD16φ: C10/C5C2 ⊆ Out C2xQ880(C2xQ8):3C10160,194
(C2xQ8):4C10 = C5xC8.C22φ: C10/C5C2 ⊆ Out C2xQ8804(C2xQ8):4C10160,198
(C2xQ8):5C10 = C5x2- 1+4φ: C10/C5C2 ⊆ Out C2xQ8804(C2xQ8):5C10160,233
(C2xQ8):6C10 = C10xC4oD4φ: trivial image80(C2xQ8):6C10160,231

Non-split extensions G=N.Q with N=C2xQ8 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2xQ8).1C10 = C5xC4.10D4φ: C10/C5C2 ⊆ Out C2xQ8804(C2xQ8).1C10160,51
(C2xQ8).2C10 = C5xQ8:C4φ: C10/C5C2 ⊆ Out C2xQ8160(C2xQ8).2C10160,53
(C2xQ8).3C10 = C5xC4:Q8φ: C10/C5C2 ⊆ Out C2xQ8160(C2xQ8).3C10160,189
(C2xQ8).4C10 = C10xQ16φ: C10/C5C2 ⊆ Out C2xQ8160(C2xQ8).4C10160,195
(C2xQ8).5C10 = Q8xC20φ: trivial image160(C2xQ8).5C10160,180

׿
x
:
Z
F
o
wr
Q
<