extension | φ:Q→Aut N | d | ρ | Label | ID |
C10.1(C2xQ8) = C4xDic10 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C10 | 160 | | C10.1(C2xQ8) | 160,89 |
C10.2(C2xQ8) = C20:2Q8 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C10 | 160 | | C10.2(C2xQ8) | 160,90 |
C10.3(C2xQ8) = C20.6Q8 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C10 | 160 | | C10.3(C2xQ8) | 160,91 |
C10.4(C2xQ8) = Dic5.14D4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C10 | 80 | | C10.4(C2xQ8) | 160,99 |
C10.5(C2xQ8) = C20:Q8 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C10 | 160 | | C10.5(C2xQ8) | 160,109 |
C10.6(C2xQ8) = C4.Dic10 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C10 | 160 | | C10.6(C2xQ8) | 160,111 |
C10.7(C2xQ8) = C2xC10.D4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C10 | 160 | | C10.7(C2xQ8) | 160,144 |
C10.8(C2xQ8) = C20.48D4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C10 | 80 | | C10.8(C2xQ8) | 160,145 |
C10.9(C2xQ8) = C2xC4:Dic5 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C10 | 160 | | C10.9(C2xQ8) | 160,146 |
C10.10(C2xQ8) = Dic5:3Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C10 | 160 | | C10.10(C2xQ8) | 160,108 |
C10.11(C2xQ8) = Dic5.Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C10 | 160 | | C10.11(C2xQ8) | 160,110 |
C10.12(C2xQ8) = D5xC4:C4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C10 | 80 | | C10.12(C2xQ8) | 160,112 |
C10.13(C2xQ8) = D10:Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C10 | 80 | | C10.13(C2xQ8) | 160,117 |
C10.14(C2xQ8) = D10:2Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C10 | 80 | | C10.14(C2xQ8) | 160,118 |
C10.15(C2xQ8) = Dic5:Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C10 | 160 | | C10.15(C2xQ8) | 160,165 |
C10.16(C2xQ8) = Q8xDic5 | φ: C2xQ8/Q8 → C2 ⊆ Aut C10 | 160 | | C10.16(C2xQ8) | 160,166 |
C10.17(C2xQ8) = D10:3Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C10 | 80 | | C10.17(C2xQ8) | 160,167 |
C10.18(C2xQ8) = C10xC4:C4 | central extension (φ=1) | 160 | | C10.18(C2xQ8) | 160,177 |
C10.19(C2xQ8) = Q8xC20 | central extension (φ=1) | 160 | | C10.19(C2xQ8) | 160,180 |
C10.20(C2xQ8) = C5xC22:Q8 | central extension (φ=1) | 80 | | C10.20(C2xQ8) | 160,183 |
C10.21(C2xQ8) = C5xC42.C2 | central extension (φ=1) | 160 | | C10.21(C2xQ8) | 160,186 |
C10.22(C2xQ8) = C5xC4:Q8 | central extension (φ=1) | 160 | | C10.22(C2xQ8) | 160,189 |