Extensions 1→N→G→Q→1 with N=C2 and Q=D42D5

Direct product G=N×Q with N=C2 and Q=D42D5
dρLabelID
C2×D42D580C2xD4:2D5160,218


Non-split extensions G=N.Q with N=C2 and Q=D42D5
extensionφ:Q→Aut NdρLabelID
C2.1(D42D5) = C23.11D10central extension (φ=1)80C2.1(D4:2D5)160,98
C2.2(D42D5) = Dic54D4central extension (φ=1)80C2.2(D4:2D5)160,102
C2.3(D42D5) = Dic53Q8central extension (φ=1)160C2.3(D4:2D5)160,108
C2.4(D42D5) = C4⋊C47D5central extension (φ=1)80C2.4(D4:2D5)160,113
C2.5(D42D5) = D4×Dic5central extension (φ=1)80C2.5(D4:2D5)160,155
C2.6(D42D5) = Dic5.14D4central stem extension (φ=1)80C2.6(D4:2D5)160,99
C2.7(D42D5) = C23.D10central stem extension (φ=1)80C2.7(D4:2D5)160,100
C2.8(D42D5) = D10.12D4central stem extension (φ=1)80C2.8(D4:2D5)160,104
C2.9(D42D5) = Dic5.5D4central stem extension (φ=1)80C2.9(D4:2D5)160,106
C2.10(D42D5) = C22.D20central stem extension (φ=1)80C2.10(D4:2D5)160,107
C2.11(D42D5) = Dic5.Q8central stem extension (φ=1)160C2.11(D4:2D5)160,110
C2.12(D42D5) = C4.Dic10central stem extension (φ=1)160C2.12(D4:2D5)160,111
C2.13(D42D5) = D102Q8central stem extension (φ=1)80C2.13(D4:2D5)160,118
C2.14(D42D5) = C4⋊C4⋊D5central stem extension (φ=1)80C2.14(D4:2D5)160,119
C2.15(D42D5) = C23.18D10central stem extension (φ=1)80C2.15(D4:2D5)160,156
C2.16(D42D5) = C20.17D4central stem extension (φ=1)80C2.16(D4:2D5)160,157
C2.17(D42D5) = C202D4central stem extension (φ=1)80C2.17(D4:2D5)160,159
C2.18(D42D5) = Dic5⋊D4central stem extension (φ=1)80C2.18(D4:2D5)160,160

׿
×
𝔽