Extensions 1→N→G→Q→1 with N=C2×C8 and Q=D5

Direct product G=N×Q with N=C2×C8 and Q=D5
dρLabelID
D5×C2×C880D5xC2xC8160,120

Semidirect products G=N:Q with N=C2×C8 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C2×C8)⋊1D5 = D101C8φ: D5/C5C2 ⊆ Aut C2×C880(C2xC8):1D5160,27
(C2×C8)⋊2D5 = D205C4φ: D5/C5C2 ⊆ Aut C2×C880(C2xC8):2D5160,28
(C2×C8)⋊3D5 = C2×D40φ: D5/C5C2 ⊆ Aut C2×C880(C2xC8):3D5160,124
(C2×C8)⋊4D5 = D407C2φ: D5/C5C2 ⊆ Aut C2×C8802(C2xC8):4D5160,125
(C2×C8)⋊5D5 = C2×C40⋊C2φ: D5/C5C2 ⊆ Aut C2×C880(C2xC8):5D5160,123
(C2×C8)⋊6D5 = C2×C8⋊D5φ: D5/C5C2 ⊆ Aut C2×C880(C2xC8):6D5160,121
(C2×C8)⋊7D5 = D20.3C4φ: D5/C5C2 ⊆ Aut C2×C8802(C2xC8):7D5160,122

Non-split extensions G=N.Q with N=C2×C8 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C2×C8).1D5 = C20.8Q8φ: D5/C5C2 ⊆ Aut C2×C8160(C2xC8).1D5160,21
(C2×C8).2D5 = C20.44D4φ: D5/C5C2 ⊆ Aut C2×C8160(C2xC8).2D5160,23
(C2×C8).3D5 = C405C4φ: D5/C5C2 ⊆ Aut C2×C8160(C2xC8).3D5160,25
(C2×C8).4D5 = C2×Dic20φ: D5/C5C2 ⊆ Aut C2×C8160(C2xC8).4D5160,126
(C2×C8).5D5 = C40.6C4φ: D5/C5C2 ⊆ Aut C2×C8802(C2xC8).5D5160,26
(C2×C8).6D5 = C406C4φ: D5/C5C2 ⊆ Aut C2×C8160(C2xC8).6D5160,24
(C2×C8).7D5 = C20.4C8φ: D5/C5C2 ⊆ Aut C2×C8802(C2xC8).7D5160,19
(C2×C8).8D5 = C408C4φ: D5/C5C2 ⊆ Aut C2×C8160(C2xC8).8D5160,22
(C2×C8).9D5 = C2×C52C16central extension (φ=1)160(C2xC8).9D5160,18
(C2×C8).10D5 = C8×Dic5central extension (φ=1)160(C2xC8).10D5160,20

׿
×
𝔽