Extensions 1→N→G→Q→1 with N=C3×C30 and Q=C2

Direct product G=N×Q with N=C3×C30 and Q=C2
dρLabelID
C6×C30180C6xC30180,37

Semidirect products G=N:Q with N=C3×C30 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C3×C30)⋊1C2 = C2×C3⋊D15φ: C2/C1C2 ⊆ Aut C3×C3090(C3xC30):1C2180,36
(C3×C30)⋊2C2 = C6×D15φ: C2/C1C2 ⊆ Aut C3×C30602(C3xC30):2C2180,34
(C3×C30)⋊3C2 = D5×C3×C6φ: C2/C1C2 ⊆ Aut C3×C3090(C3xC30):3C2180,32
(C3×C30)⋊4C2 = S3×C30φ: C2/C1C2 ⊆ Aut C3×C30602(C3xC30):4C2180,33
(C3×C30)⋊5C2 = C10×C3⋊S3φ: C2/C1C2 ⊆ Aut C3×C3090(C3xC30):5C2180,35

Non-split extensions G=N.Q with N=C3×C30 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C3×C30).1C2 = C3⋊Dic15φ: C2/C1C2 ⊆ Aut C3×C30180(C3xC30).1C2180,17
(C3×C30).2C2 = C3×Dic15φ: C2/C1C2 ⊆ Aut C3×C30602(C3xC30).2C2180,15
(C3×C30).3C2 = C32×Dic5φ: C2/C1C2 ⊆ Aut C3×C30180(C3xC30).3C2180,13
(C3×C30).4C2 = Dic3×C15φ: C2/C1C2 ⊆ Aut C3×C30602(C3xC30).4C2180,14
(C3×C30).5C2 = C5×C3⋊Dic3φ: C2/C1C2 ⊆ Aut C3×C30180(C3xC30).5C2180,16

׿
×
𝔽