Extensions 1→N→G→Q→1 with N=C2×C4 and Q=D11

Direct product G=N×Q with N=C2×C4 and Q=D11
dρLabelID
C2×C4×D1188C2xC4xD11176,28

Semidirect products G=N:Q with N=C2×C4 and Q=D11
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1D11 = D22⋊C4φ: D11/C11C2 ⊆ Aut C2×C488(C2xC4):1D11176,13
(C2×C4)⋊2D11 = C2×D44φ: D11/C11C2 ⊆ Aut C2×C488(C2xC4):2D11176,29
(C2×C4)⋊3D11 = D445C2φ: D11/C11C2 ⊆ Aut C2×C4882(C2xC4):3D11176,30

Non-split extensions G=N.Q with N=C2×C4 and Q=D11
extensionφ:Q→Aut NdρLabelID
(C2×C4).1D11 = Dic11⋊C4φ: D11/C11C2 ⊆ Aut C2×C4176(C2xC4).1D11176,11
(C2×C4).2D11 = C44.C4φ: D11/C11C2 ⊆ Aut C2×C4882(C2xC4).2D11176,9
(C2×C4).3D11 = C44⋊C4φ: D11/C11C2 ⊆ Aut C2×C4176(C2xC4).3D11176,12
(C2×C4).4D11 = C2×Dic22φ: D11/C11C2 ⊆ Aut C2×C4176(C2xC4).4D11176,27
(C2×C4).5D11 = C2×C11⋊C8central extension (φ=1)176(C2xC4).5D11176,8
(C2×C4).6D11 = C4×Dic11central extension (φ=1)176(C2xC4).6D11176,10

׿
×
𝔽