Extensions 1→N→G→Q→1 with N=C4 and Q=D22

Direct product G=N×Q with N=C4 and Q=D22
dρLabelID
C2×C4×D1188C2xC4xD11176,28

Semidirect products G=N:Q with N=C4 and Q=D22
extensionφ:Q→Aut NdρLabelID
C41D22 = D4×D11φ: D22/D11C2 ⊆ Aut C4444+C4:1D22176,31
C42D22 = C2×D44φ: D22/C22C2 ⊆ Aut C488C4:2D22176,29

Non-split extensions G=N.Q with N=C4 and Q=D22
extensionφ:Q→Aut NdρLabelID
C4.1D22 = D4⋊D11φ: D22/D11C2 ⊆ Aut C4884+C4.1D22176,14
C4.2D22 = D4.D11φ: D22/D11C2 ⊆ Aut C4884-C4.2D22176,15
C4.3D22 = Q8⋊D11φ: D22/D11C2 ⊆ Aut C4884+C4.3D22176,16
C4.4D22 = C11⋊Q16φ: D22/D11C2 ⊆ Aut C41764-C4.4D22176,17
C4.5D22 = D42D11φ: D22/D11C2 ⊆ Aut C4884-C4.5D22176,32
C4.6D22 = Q8×D11φ: D22/D11C2 ⊆ Aut C4884-C4.6D22176,33
C4.7D22 = D44⋊C2φ: D22/D11C2 ⊆ Aut C4884+C4.7D22176,34
C4.8D22 = C8⋊D11φ: D22/C22C2 ⊆ Aut C4882C4.8D22176,5
C4.9D22 = D88φ: D22/C22C2 ⊆ Aut C4882+C4.9D22176,6
C4.10D22 = Dic44φ: D22/C22C2 ⊆ Aut C41762-C4.10D22176,7
C4.11D22 = C2×Dic22φ: D22/C22C2 ⊆ Aut C4176C4.11D22176,27
C4.12D22 = C8×D11central extension (φ=1)882C4.12D22176,3
C4.13D22 = C88⋊C2central extension (φ=1)882C4.13D22176,4
C4.14D22 = C2×C11⋊C8central extension (φ=1)176C4.14D22176,8
C4.15D22 = C44.C4central extension (φ=1)882C4.15D22176,9
C4.16D22 = D445C2central extension (φ=1)882C4.16D22176,30

׿
×
𝔽