Direct product G=NxQ with N=C4 and Q=D22
Semidirect products G=N:Q with N=C4 and Q=D22
Non-split extensions G=N.Q with N=C4 and Q=D22
extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1D22 = D4:D11 | φ: D22/D11 → C2 ⊆ Aut C4 | 88 | 4+ | C4.1D22 | 176,14 |
C4.2D22 = D4.D11 | φ: D22/D11 → C2 ⊆ Aut C4 | 88 | 4- | C4.2D22 | 176,15 |
C4.3D22 = Q8:D11 | φ: D22/D11 → C2 ⊆ Aut C4 | 88 | 4+ | C4.3D22 | 176,16 |
C4.4D22 = C11:Q16 | φ: D22/D11 → C2 ⊆ Aut C4 | 176 | 4- | C4.4D22 | 176,17 |
C4.5D22 = D4:2D11 | φ: D22/D11 → C2 ⊆ Aut C4 | 88 | 4- | C4.5D22 | 176,32 |
C4.6D22 = Q8xD11 | φ: D22/D11 → C2 ⊆ Aut C4 | 88 | 4- | C4.6D22 | 176,33 |
C4.7D22 = D44:C2 | φ: D22/D11 → C2 ⊆ Aut C4 | 88 | 4+ | C4.7D22 | 176,34 |
C4.8D22 = C8:D11 | φ: D22/C22 → C2 ⊆ Aut C4 | 88 | 2 | C4.8D22 | 176,5 |
C4.9D22 = D88 | φ: D22/C22 → C2 ⊆ Aut C4 | 88 | 2+ | C4.9D22 | 176,6 |
C4.10D22 = Dic44 | φ: D22/C22 → C2 ⊆ Aut C4 | 176 | 2- | C4.10D22 | 176,7 |
C4.11D22 = C2xDic22 | φ: D22/C22 → C2 ⊆ Aut C4 | 176 | | C4.11D22 | 176,27 |
C4.12D22 = C8xD11 | central extension (φ=1) | 88 | 2 | C4.12D22 | 176,3 |
C4.13D22 = C88:C2 | central extension (φ=1) | 88 | 2 | C4.13D22 | 176,4 |
C4.14D22 = C2xC11:C8 | central extension (φ=1) | 176 | | C4.14D22 | 176,8 |
C4.15D22 = C44.C4 | central extension (φ=1) | 88 | 2 | C4.15D22 | 176,9 |
C4.16D22 = D44:5C2 | central extension (φ=1) | 88 | 2 | C4.16D22 | 176,30 |
x
:
Z
F
o
wr
Q
<