Extensions 1→N→G→Q→1 with N=C4×D11 and Q=C2

Direct product G=N×Q with N=C4×D11 and Q=C2
dρLabelID
C2×C4×D1188C2xC4xD11176,28

Semidirect products G=N:Q with N=C4×D11 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D11)⋊1C2 = D4×D11φ: C2/C1C2 ⊆ Out C4×D11444+(C4xD11):1C2176,31
(C4×D11)⋊2C2 = D42D11φ: C2/C1C2 ⊆ Out C4×D11884-(C4xD11):2C2176,32
(C4×D11)⋊3C2 = D44⋊C2φ: C2/C1C2 ⊆ Out C4×D11884+(C4xD11):3C2176,34
(C4×D11)⋊4C2 = D445C2φ: C2/C1C2 ⊆ Out C4×D11882(C4xD11):4C2176,30

Non-split extensions G=N.Q with N=C4×D11 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D11).1C2 = Q8×D11φ: C2/C1C2 ⊆ Out C4×D11884-(C4xD11).1C2176,33
(C4×D11).2C2 = C88⋊C2φ: C2/C1C2 ⊆ Out C4×D11882(C4xD11).2C2176,4
(C4×D11).3C2 = C8×D11φ: trivial image882(C4xD11).3C2176,3

׿
×
𝔽