Extensions 1→N→G→Q→1 with N=C2 and Q=Dic35D4

Direct product G=N×Q with N=C2 and Q=Dic35D4
dρLabelID
C2×Dic35D496C2xDic3:5D4192,1062


Non-split extensions G=N.Q with N=C2 and Q=Dic35D4
extensionφ:Q→Aut NdρLabelID
C2.1(Dic35D4) = D6⋊C42central extension (φ=1)96C2.1(Dic3:5D4)192,225
C2.2(Dic35D4) = D12⋊C8central extension (φ=1)96C2.2(Dic3:5D4)192,393
C2.3(Dic35D4) = Dic3×C4⋊C4central extension (φ=1)192C2.3(Dic3:5D4)192,533
C2.4(Dic35D4) = C2.(C4×Dic6)central stem extension (φ=1)192C2.4(Dic3:5D4)192,213
C2.5(Dic35D4) = (C2×C4)⋊9D12central stem extension (φ=1)96C2.5(Dic3:5D4)192,224
C2.6(Dic35D4) = D6⋊C45C4central stem extension (φ=1)96C2.6(Dic3:5D4)192,228
C2.7(Dic35D4) = D63M4(2)central stem extension (φ=1)96C2.7(Dic3:5D4)192,395
C2.8(Dic35D4) = C122M4(2)central stem extension (φ=1)96C2.8(Dic3:5D4)192,397
C2.9(Dic35D4) = Dic38SD16central stem extension (φ=1)96C2.9(Dic3:5D4)192,411
C2.10(Dic35D4) = Dic129C4central stem extension (φ=1)192C2.10(Dic3:5D4)192,412
C2.11(Dic35D4) = D249C4central stem extension (φ=1)96C2.11(Dic3:5D4)192,428
C2.12(Dic35D4) = Dic35D8central stem extension (φ=1)96C2.12(Dic3:5D4)192,431
C2.13(Dic35D4) = Dic35Q16central stem extension (φ=1)192C2.13(Dic3:5D4)192,432
C2.14(Dic35D4) = C24⋊C2⋊C4central stem extension (φ=1)96C2.14(Dic3:5D4)192,448
C2.15(Dic35D4) = D2410C4central stem extension (φ=1)484C2.15(Dic3:5D4)192,453
C2.16(Dic35D4) = D247C4central stem extension (φ=1)484C2.16(Dic3:5D4)192,454
C2.17(Dic35D4) = C12⋊(C4⋊C4)central stem extension (φ=1)192C2.17(Dic3:5D4)192,531
C2.18(Dic35D4) = (C2×D12)⋊10C4central stem extension (φ=1)96C2.18(Dic3:5D4)192,547
C2.19(Dic35D4) = D6⋊C46C4central stem extension (φ=1)96C2.19(Dic3:5D4)192,548
C2.20(Dic35D4) = D6⋊C47C4central stem extension (φ=1)96C2.20(Dic3:5D4)192,549

׿
×
𝔽