Extensions 1→N→G→Q→1 with N=C4 and Q=C2xC3:C8

Direct product G=NxQ with N=C4 and Q=C2xC3:C8
dρLabelID
C2xC4xC3:C8192C2xC4xC3:C8192,479

Semidirect products G=N:Q with N=C4 and Q=C2xC3:C8
extensionφ:Q→Aut NdρLabelID
C4:1(C2xC3:C8) = D4xC3:C8φ: C2xC3:C8/C3:C8C2 ⊆ Aut C496C4:1(C2xC3:C8)192,569
C4:2(C2xC3:C8) = C2xC12:C8φ: C2xC3:C8/C2xC12C2 ⊆ Aut C4192C4:2(C2xC3:C8)192,482

Non-split extensions G=N.Q with N=C4 and Q=C2xC3:C8
extensionφ:Q→Aut NdρLabelID
C4.1(C2xC3:C8) = C12.57D8φ: C2xC3:C8/C3:C8C2 ⊆ Aut C496C4.1(C2xC3:C8)192,93
C4.2(C2xC3:C8) = C12.26Q16φ: C2xC3:C8/C3:C8C2 ⊆ Aut C4192C4.2(C2xC3:C8)192,94
C4.3(C2xC3:C8) = C24.99D4φ: C2xC3:C8/C3:C8C2 ⊆ Aut C4964C4.3(C2xC3:C8)192,120
C4.4(C2xC3:C8) = Q8xC3:C8φ: C2xC3:C8/C3:C8C2 ⊆ Aut C4192C4.4(C2xC3:C8)192,582
C4.5(C2xC3:C8) = C24.78C23φ: C2xC3:C8/C3:C8C2 ⊆ Aut C4964C4.5(C2xC3:C8)192,699
C4.6(C2xC3:C8) = C24:2C8φ: C2xC3:C8/C2xC12C2 ⊆ Aut C4192C4.6(C2xC3:C8)192,16
C4.7(C2xC3:C8) = C24:1C8φ: C2xC3:C8/C2xC12C2 ⊆ Aut C4192C4.7(C2xC3:C8)192,17
C4.8(C2xC3:C8) = C24.1C8φ: C2xC3:C8/C2xC12C2 ⊆ Aut C4482C4.8(C2xC3:C8)192,22
C4.9(C2xC3:C8) = C2xC12.C8φ: C2xC3:C8/C2xC12C2 ⊆ Aut C496C4.9(C2xC3:C8)192,656
C4.10(C2xC3:C8) = C8xC3:C8central extension (φ=1)192C4.10(C2xC3:C8)192,12
C4.11(C2xC3:C8) = C24:C8central extension (φ=1)192C4.11(C2xC3:C8)192,14
C4.12(C2xC3:C8) = C4xC3:C16central extension (φ=1)192C4.12(C2xC3:C8)192,19
C4.13(C2xC3:C8) = C24.C8central extension (φ=1)192C4.13(C2xC3:C8)192,20
C4.14(C2xC3:C8) = C2xC3:C32central extension (φ=1)192C4.14(C2xC3:C8)192,57
C4.15(C2xC3:C8) = C3:M6(2)central extension (φ=1)962C4.15(C2xC3:C8)192,58
C4.16(C2xC3:C8) = C42.285D6central extension (φ=1)96C4.16(C2xC3:C8)192,484
C4.17(C2xC3:C8) = C22xC3:C16central extension (φ=1)192C4.17(C2xC3:C8)192,655

׿
x
:
Z
F
o
wr
Q
<