extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(C4×Dic3) = C12.C42 | φ: C4×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.1(C4xDic3) | 192,88 |
C4.2(C4×Dic3) = C12.2C42 | φ: C4×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 48 | | C4.2(C4xDic3) | 192,91 |
C4.3(C4×Dic3) = C12.3C42 | φ: C4×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 48 | | C4.3(C4xDic3) | 192,114 |
C4.4(C4×Dic3) = C12.4C42 | φ: C4×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.4(C4xDic3) | 192,117 |
C4.5(C4×Dic3) = C12.5C42 | φ: C4×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.5(C4xDic3) | 192,556 |
C4.6(C4×Dic3) = Dic3×M4(2) | φ: C4×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.6(C4xDic3) | 192,676 |
C4.7(C4×Dic3) = C12.7C42 | φ: C4×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.7(C4xDic3) | 192,681 |
C4.8(C4×Dic3) = C12.8C42 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C4 | 48 | | C4.8(C4xDic3) | 192,82 |
C4.9(C4×Dic3) = C12.9C42 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C4 | 192 | | C4.9(C4xDic3) | 192,110 |
C4.10(C4×Dic3) = C12.10C42 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C4 | 96 | | C4.10(C4xDic3) | 192,111 |
C4.11(C4×Dic3) = C4×C4.Dic3 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C4 | 96 | | C4.11(C4xDic3) | 192,481 |
C4.12(C4×Dic3) = C12.12C42 | φ: C4×Dic3/C2×C12 → C2 ⊆ Aut C4 | 96 | | C4.12(C4xDic3) | 192,660 |
C4.13(C4×Dic3) = C4×C3⋊C16 | central extension (φ=1) | 192 | | C4.13(C4xDic3) | 192,19 |
C4.14(C4×Dic3) = C24.C8 | central extension (φ=1) | 192 | | C4.14(C4xDic3) | 192,20 |
C4.15(C4×Dic3) = Dic3×C16 | central extension (φ=1) | 192 | | C4.15(C4xDic3) | 192,59 |
C4.16(C4×Dic3) = C48⋊10C4 | central extension (φ=1) | 192 | | C4.16(C4xDic3) | 192,61 |
C4.17(C4×Dic3) = C2×C4×C3⋊C8 | central extension (φ=1) | 192 | | C4.17(C4xDic3) | 192,479 |
C4.18(C4×Dic3) = C2×C42.S3 | central extension (φ=1) | 192 | | C4.18(C4xDic3) | 192,480 |
C4.19(C4×Dic3) = C42⋊6Dic3 | central extension (φ=1) | 192 | | C4.19(C4xDic3) | 192,491 |
C4.20(C4×Dic3) = Dic3×C2×C8 | central extension (φ=1) | 192 | | C4.20(C4xDic3) | 192,657 |
C4.21(C4×Dic3) = C2×C24⋊C4 | central extension (φ=1) | 192 | | C4.21(C4xDic3) | 192,659 |
C4.22(C4×Dic3) = C12.15C42 | central stem extension (φ=1) | 48 | 4 | C4.22(C4xDic3) | 192,25 |
C4.23(C4×Dic3) = C48⋊C4 | central stem extension (φ=1) | 48 | 4 | C4.23(C4xDic3) | 192,71 |
C4.24(C4×Dic3) = C42⋊3Dic3 | central stem extension (φ=1) | 48 | 4 | C4.24(C4xDic3) | 192,90 |
C4.25(C4×Dic3) = C12.20C42 | central stem extension (φ=1) | 48 | 4 | C4.25(C4xDic3) | 192,116 |
C4.26(C4×Dic3) = C12.21C42 | central stem extension (φ=1) | 48 | 4 | C4.26(C4xDic3) | 192,119 |