Extensions 1→N→G→Q→1 with N=C2×D4 and Q=C12

Direct product G=N×Q with N=C2×D4 and Q=C12
dρLabelID
D4×C2×C1296D4xC2xC12192,1404

Semidirect products G=N:Q with N=C2×D4 and Q=C12
extensionφ:Q→Out NdρLabelID
(C2×D4)⋊1C12 = C3×C22.SD16φ: C12/C3C4 ⊆ Out C2×D448(C2xD4):1C12192,133
(C2×D4)⋊2C12 = C3×C42⋊C4φ: C12/C3C4 ⊆ Out C2×D4244(C2xD4):2C12192,159
(C2×D4)⋊3C12 = C3×C23.23D4φ: C12/C6C2 ⊆ Out C2×D496(C2xD4):3C12192,819
(C2×D4)⋊4C12 = C3×C24.3C22φ: C12/C6C2 ⊆ Out C2×D496(C2xD4):4C12192,823
(C2×D4)⋊5C12 = C6×C23⋊C4φ: C12/C6C2 ⊆ Out C2×D448(C2xD4):5C12192,842
(C2×D4)⋊6C12 = C3×C23.C23φ: C12/C6C2 ⊆ Out C2×D4484(C2xD4):6C12192,843
(C2×D4)⋊7C12 = C6×D4⋊C4φ: C12/C6C2 ⊆ Out C2×D496(C2xD4):7C12192,847
(C2×D4)⋊8C12 = C3×C23.37D4φ: C12/C6C2 ⊆ Out C2×D448(C2xD4):8C12192,851
(C2×D4)⋊9C12 = C6×C4≀C2φ: C12/C6C2 ⊆ Out C2×D448(C2xD4):9C12192,853
(C2×D4)⋊10C12 = C3×C42⋊C22φ: C12/C6C2 ⊆ Out C2×D4484(C2xD4):10C12192,854
(C2×D4)⋊11C12 = C3×C22.11C24φ: C12/C6C2 ⊆ Out C2×D448(C2xD4):11C12192,1407

Non-split extensions G=N.Q with N=C2×D4 and Q=C12
extensionφ:Q→Out NdρLabelID
(C2×D4).1C12 = C3×C42.C22φ: C12/C3C4 ⊆ Out C2×D496(C2xD4).1C12192,135
(C2×D4).2C12 = C3×C4.D8φ: C12/C3C4 ⊆ Out C2×D496(C2xD4).2C12192,137
(C2×D4).3C12 = C3×C42.C4φ: C12/C3C4 ⊆ Out C2×D4484(C2xD4).3C12192,161
(C2×D4).4C12 = C3×D4⋊C8φ: C12/C6C2 ⊆ Out C2×D496(C2xD4).4C12192,131
(C2×D4).5C12 = C3×(C22×C8)⋊C2φ: C12/C6C2 ⊆ Out C2×D496(C2xD4).5C12192,841
(C2×D4).6C12 = C6×C4.D4φ: C12/C6C2 ⊆ Out C2×D448(C2xD4).6C12192,844
(C2×D4).7C12 = C3×M4(2).8C22φ: C12/C6C2 ⊆ Out C2×D4484(C2xD4).7C12192,846
(C2×D4).8C12 = C3×C89D4φ: C12/C6C2 ⊆ Out C2×D496(C2xD4).8C12192,868
(C2×D4).9C12 = C3×C86D4φ: C12/C6C2 ⊆ Out C2×D496(C2xD4).9C12192,869
(C2×D4).10C12 = C3×Q8○M4(2)φ: C12/C6C2 ⊆ Out C2×D4484(C2xD4).10C12192,1457
(C2×D4).11C12 = D4×C24φ: trivial image96(C2xD4).11C12192,867
(C2×D4).12C12 = C6×C8○D4φ: trivial image96(C2xD4).12C12192,1456

׿
×
𝔽