Extensions 1→N→G→Q→1 with N=D4 and Q=C3×D4

Direct product G=N×Q with N=D4 and Q=C3×D4
dρLabelID
C3×D4248C3xD4^2192,1434

Semidirect products G=N:Q with N=D4 and Q=C3×D4
extensionφ:Q→Out NdρLabelID
D41(C3×D4) = C3×C4⋊D8φ: C3×D4/C12C2 ⊆ Out D496D4:1(C3xD4)192,892
D42(C3×D4) = C3×C22⋊D8φ: C3×D4/C2×C6C2 ⊆ Out D448D4:2(C3xD4)192,880
D43(C3×D4) = C3×D4⋊D4φ: C3×D4/C2×C6C2 ⊆ Out D496D4:3(C3xD4)192,882
D44(C3×D4) = C3×D44D4φ: C3×D4/C2×C6C2 ⊆ Out D4244D4:4(C3xD4)192,886
D45(C3×D4) = C3×D45D4φ: trivial image48D4:5(C3xD4)192,1435
D46(C3×D4) = C3×D46D4φ: trivial image96D4:6(C3xD4)192,1436

Non-split extensions G=N.Q with N=D4 and Q=C3×D4
extensionφ:Q→Out NdρLabelID
D4.1(C3×D4) = C3×D4.D4φ: C3×D4/C12C2 ⊆ Out D496D4.1(C3xD4)192,894
D4.2(C3×D4) = C3×D4.2D4φ: C3×D4/C12C2 ⊆ Out D496D4.2(C3xD4)192,896
D4.3(C3×D4) = C3×D4.3D4φ: C3×D4/C12C2 ⊆ Out D4484D4.3(C3xD4)192,904
D4.4(C3×D4) = C3×D4.4D4φ: C3×D4/C12C2 ⊆ Out D4484D4.4(C3xD4)192,905
D4.5(C3×D4) = C3×D4.5D4φ: C3×D4/C12C2 ⊆ Out D4964D4.5(C3xD4)192,906
D4.6(C3×D4) = C3×C22⋊SD16φ: C3×D4/C2×C6C2 ⊆ Out D448D4.6(C3xD4)192,883
D4.7(C3×D4) = C3×D4.7D4φ: C3×D4/C2×C6C2 ⊆ Out D496D4.7(C3xD4)192,885
D4.8(C3×D4) = C3×D4.8D4φ: C3×D4/C2×C6C2 ⊆ Out D4484D4.8(C3xD4)192,887
D4.9(C3×D4) = C3×D4.9D4φ: C3×D4/C2×C6C2 ⊆ Out D4484D4.9(C3xD4)192,888
D4.10(C3×D4) = C3×D4.10D4φ: C3×D4/C2×C6C2 ⊆ Out D4484D4.10(C3xD4)192,889
D4.11(C3×D4) = C3×D4○D8φ: trivial image484D4.11(C3xD4)192,1465
D4.12(C3×D4) = C3×D4○SD16φ: trivial image484D4.12(C3xD4)192,1466
D4.13(C3×D4) = C3×Q8○D8φ: trivial image964D4.13(C3xD4)192,1467

׿
×
𝔽