Extensions 1→N→G→Q→1 with N=Q16 and Q=C2×C6

Direct product G=N×Q with N=Q16 and Q=C2×C6
dρLabelID
C2×C6×Q16192C2xC6xQ16192,1460

Semidirect products G=N:Q with N=Q16 and Q=C2×C6
extensionφ:Q→Out NdρLabelID
Q161(C2×C6) = C6×SD32φ: C2×C6/C6C2 ⊆ Out Q1696Q16:1(C2xC6)192,939
Q162(C2×C6) = C3×C16⋊C22φ: C2×C6/C6C2 ⊆ Out Q16484Q16:2(C2xC6)192,942
Q163(C2×C6) = C6×C8.C22φ: C2×C6/C6C2 ⊆ Out Q1696Q16:3(C2xC6)192,1463
Q164(C2×C6) = C3×D8⋊C22φ: C2×C6/C6C2 ⊆ Out Q16484Q16:4(C2xC6)192,1464
Q165(C2×C6) = C3×D4○SD16φ: C2×C6/C6C2 ⊆ Out Q16484Q16:5(C2xC6)192,1466
Q166(C2×C6) = C6×C4○D8φ: trivial image96Q16:6(C2xC6)192,1461
Q167(C2×C6) = C3×D4○D8φ: trivial image484Q16:7(C2xC6)192,1465

Non-split extensions G=N.Q with N=Q16 and Q=C2×C6
extensionφ:Q→Out NdρLabelID
Q16.1(C2×C6) = C6×Q32φ: C2×C6/C6C2 ⊆ Out Q16192Q16.1(C2xC6)192,940
Q16.2(C2×C6) = C3×C4○D16φ: C2×C6/C6C2 ⊆ Out Q16962Q16.2(C2xC6)192,941
Q16.3(C2×C6) = C3×Q32⋊C2φ: C2×C6/C6C2 ⊆ Out Q16964Q16.3(C2xC6)192,943
Q16.4(C2×C6) = C3×Q8○D8φ: trivial image964Q16.4(C2xC6)192,1467

׿
×
𝔽