Extensions 1→N→G→Q→1 with N=C2 and Q=C8×Dic3

Direct product G=N×Q with N=C2 and Q=C8×Dic3
dρLabelID
Dic3×C2×C8192Dic3xC2xC8192,657


Non-split extensions G=N.Q with N=C2 and Q=C8×Dic3
extensionφ:Q→Aut NdρLabelID
C2.1(C8×Dic3) = C8×C3⋊C8central extension (φ=1)192C2.1(C8xDic3)192,12
C2.2(C8×Dic3) = Dic3×C16central extension (φ=1)192C2.2(C8xDic3)192,59
C2.3(C8×Dic3) = C42.279D6central stem extension (φ=1)192C2.3(C8xDic3)192,13
C2.4(C8×Dic3) = C4810C4central stem extension (φ=1)192C2.4(C8xDic3)192,61
C2.5(C8×Dic3) = (C2×C24)⋊5C4central stem extension (φ=1)192C2.5(C8xDic3)192,109

׿
×
𝔽