Extensions 1→N→G→Q→1 with N=C3 and Q=SD16⋊C4

Direct product G=N×Q with N=C3 and Q=SD16⋊C4
dρLabelID
C3×SD16⋊C496C3xSD16:C4192,873

Semidirect products G=N:Q with N=C3 and Q=SD16⋊C4
extensionφ:Q→Aut NdρLabelID
C31(SD16⋊C4) = C42.16D6φ: SD16⋊C4/C8⋊C4C2 ⊆ Aut C396C3:1(SD16:C4)192,269
C32(SD16⋊C4) = D4.S3⋊C4φ: SD16⋊C4/D4⋊C4C2 ⊆ Aut C396C3:2(SD16:C4)192,316
C33(SD16⋊C4) = Q83(C4×S3)φ: SD16⋊C4/Q8⋊C4C2 ⊆ Aut C396C3:3(SD16:C4)192,376
C34(SD16⋊C4) = C24⋊C2⋊C4φ: SD16⋊C4/C2.D8C2 ⊆ Aut C396C3:4(SD16:C4)192,448
C35(SD16⋊C4) = C42.51D6φ: SD16⋊C4/C4×D4C2 ⊆ Aut C396C3:5(SD16:C4)192,577
C36(SD16⋊C4) = C42.56D6φ: SD16⋊C4/C4×Q8C2 ⊆ Aut C396C3:6(SD16:C4)192,585
C37(SD16⋊C4) = SD16⋊Dic3φ: SD16⋊C4/C2×SD16C2 ⊆ Aut C396C3:7(SD16:C4)192,723


׿
×
𝔽