Extensions 1→N→G→Q→1 with N=C2 and Q=C3×2- 1+4

Direct product G=N×Q with N=C2 and Q=C3×2- 1+4
dρLabelID
C6×2- 1+496C6xES-(2,2)192,1535


Non-split extensions G=N.Q with N=C2 and Q=C3×2- 1+4
extensionφ:Q→Aut NdρLabelID
C2.1(C3×2- 1+4) = C3×C23.32C23central extension (φ=1)96C2.1(C3xES-(2,2))192,1408
C2.2(C3×2- 1+4) = C3×C23.33C23central extension (φ=1)96C2.2(C3xES-(2,2))192,1409
C2.3(C3×2- 1+4) = C3×C23.38C23central stem extension (φ=1)96C2.3(C3xES-(2,2))192,1425
C2.4(C3×2- 1+4) = C3×C22.31C24central stem extension (φ=1)96C2.4(C3xES-(2,2))192,1426
C2.5(C3×2- 1+4) = C3×C22.33C24central stem extension (φ=1)96C2.5(C3xES-(2,2))192,1428
C2.6(C3×2- 1+4) = C3×C22.35C24central stem extension (φ=1)96C2.6(C3xES-(2,2))192,1430
C2.7(C3×2- 1+4) = C3×C22.36C24central stem extension (φ=1)96C2.7(C3xES-(2,2))192,1431
C2.8(C3×2- 1+4) = C3×C23.41C23central stem extension (φ=1)96C2.8(C3xES-(2,2))192,1433
C2.9(C3×2- 1+4) = C3×D46D4central stem extension (φ=1)96C2.9(C3xES-(2,2))192,1436
C2.10(C3×2- 1+4) = C3×Q85D4central stem extension (φ=1)96C2.10(C3xES-(2,2))192,1437
C2.11(C3×2- 1+4) = C3×D4×Q8central stem extension (φ=1)96C2.11(C3xES-(2,2))192,1438
C2.12(C3×2- 1+4) = C3×C22.46C24central stem extension (φ=1)96C2.12(C3xES-(2,2))192,1441
C2.13(C3×2- 1+4) = C3×C22.50C24central stem extension (φ=1)96C2.13(C3xES-(2,2))192,1445
C2.14(C3×2- 1+4) = C3×Q83Q8central stem extension (φ=1)192C2.14(C3xES-(2,2))192,1446
C2.15(C3×2- 1+4) = C3×C22.56C24central stem extension (φ=1)96C2.15(C3xES-(2,2))192,1451
C2.16(C3×2- 1+4) = C3×C22.57C24central stem extension (φ=1)96C2.16(C3xES-(2,2))192,1452
C2.17(C3×2- 1+4) = C3×C22.58C24central stem extension (φ=1)192C2.17(C3xES-(2,2))192,1453

׿
×
𝔽