Extensions 1→N→G→Q→1 with N=C3 and Q=M4(2)⋊4C4

Direct product G=N×Q with N=C3 and Q=M4(2)⋊4C4
dρLabelID
C3×M4(2)⋊4C4484C3xM4(2):4C4192,150

Semidirect products G=N:Q with N=C3 and Q=M4(2)⋊4C4
extensionφ:Q→Aut NdρLabelID
C31(M4(2)⋊4C4) = (C2×C12).Q8φ: M4(2)⋊4C4/C42⋊C2C2 ⊆ Aut C3484C3:1(M4(2):4C4)192,92
C32(M4(2)⋊4C4) = (C2×C24)⋊C4φ: M4(2)⋊4C4/C2×M4(2)C2 ⊆ Aut C3484C3:2(M4(2):4C4)192,115
C33(M4(2)⋊4C4) = M4(2)⋊4Dic3φ: M4(2)⋊4C4/C2×M4(2)C2 ⊆ Aut C3484C3:3(M4(2):4C4)192,118


׿
×
𝔽