Extensions 1→N→G→Q→1 with N=C4 and Q=C3×SD16

Direct product G=N×Q with N=C4 and Q=C3×SD16
dρLabelID
C12×SD1696C12xSD16192,871

Semidirect products G=N:Q with N=C4 and Q=C3×SD16
extensionφ:Q→Aut NdρLabelID
C41(C3×SD16) = C3×C85D4φ: C3×SD16/C24C2 ⊆ Aut C496C4:1(C3xSD16)192,925
C42(C3×SD16) = C3×D4.D4φ: C3×SD16/C3×D4C2 ⊆ Aut C496C4:2(C3xSD16)192,894
C43(C3×SD16) = C3×C4⋊SD16φ: C3×SD16/C3×Q8C2 ⊆ Aut C496C4:3(C3xSD16)192,893

Non-split extensions G=N.Q with N=C4 and Q=C3×SD16
extensionφ:Q→Aut NdρLabelID
C4.1(C3×SD16) = C3×C2.D16φ: C3×SD16/C24C2 ⊆ Aut C496C4.1(C3xSD16)192,163
C4.2(C3×SD16) = C3×C2.Q32φ: C3×SD16/C24C2 ⊆ Aut C4192C4.2(C3xSD16)192,164
C4.3(C3×SD16) = C3×C4.4D8φ: C3×SD16/C24C2 ⊆ Aut C496C4.3(C3xSD16)192,919
C4.4(C3×SD16) = C3×C4.SD16φ: C3×SD16/C24C2 ⊆ Aut C4192C4.4(C3xSD16)192,920
C4.5(C3×SD16) = C3×C83Q8φ: C3×SD16/C24C2 ⊆ Aut C4192C4.5(C3xSD16)192,931
C4.6(C3×SD16) = C3×C4.10D8φ: C3×SD16/C3×D4C2 ⊆ Aut C4192C4.6(C3xSD16)192,138
C4.7(C3×SD16) = C3×C4.6Q16φ: C3×SD16/C3×D4C2 ⊆ Aut C4192C4.7(C3xSD16)192,139
C4.8(C3×SD16) = C3×D82C4φ: C3×SD16/C3×D4C2 ⊆ Aut C4484C4.8(C3xSD16)192,166
C4.9(C3×SD16) = C3×C8.Q8φ: C3×SD16/C3×D4C2 ⊆ Aut C4484C4.9(C3xSD16)192,171
C4.10(C3×SD16) = C3×D42Q8φ: C3×SD16/C3×D4C2 ⊆ Aut C496C4.10(C3xSD16)192,909
C4.11(C3×SD16) = C3×C4.D8φ: C3×SD16/C3×Q8C2 ⊆ Aut C496C4.11(C3xSD16)192,137
C4.12(C3×SD16) = C3×Q8⋊Q8φ: C3×SD16/C3×Q8C2 ⊆ Aut C4192C4.12(C3xSD16)192,908
C4.13(C3×SD16) = C3×D4⋊C8central extension (φ=1)96C4.13(C3xSD16)192,131
C4.14(C3×SD16) = C3×Q8⋊C8central extension (φ=1)192C4.14(C3xSD16)192,132
C4.15(C3×SD16) = C3×C82C8central extension (φ=1)192C4.15(C3xSD16)192,140

׿
×
𝔽