extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C4xQ8) = (C2xC12):Q8 | φ: C4xQ8/C42 → C2 ⊆ Aut C6 | 192 | | C6.1(C4xQ8) | 192,205 |
C6.2(C4xQ8) = C6.(C4xQ8) | φ: C4xQ8/C42 → C2 ⊆ Aut C6 | 192 | | C6.2(C4xQ8) | 192,206 |
C6.3(C4xQ8) = C2.(C4xDic6) | φ: C4xQ8/C42 → C2 ⊆ Aut C6 | 192 | | C6.3(C4xQ8) | 192,213 |
C6.4(C4xQ8) = Dic3:C4:C4 | φ: C4xQ8/C42 → C2 ⊆ Aut C6 | 192 | | C6.4(C4xQ8) | 192,214 |
C6.5(C4xQ8) = C8xDic6 | φ: C4xQ8/C42 → C2 ⊆ Aut C6 | 192 | | C6.5(C4xQ8) | 192,237 |
C6.6(C4xQ8) = C24:12Q8 | φ: C4xQ8/C42 → C2 ⊆ Aut C6 | 192 | | C6.6(C4xQ8) | 192,238 |
C6.7(C4xQ8) = C24:Q8 | φ: C4xQ8/C42 → C2 ⊆ Aut C6 | 192 | | C6.7(C4xQ8) | 192,260 |
C6.8(C4xQ8) = C12:4(C4:C4) | φ: C4xQ8/C42 → C2 ⊆ Aut C6 | 192 | | C6.8(C4xQ8) | 192,487 |
C6.9(C4xQ8) = (C2xDic6):7C4 | φ: C4xQ8/C42 → C2 ⊆ Aut C6 | 192 | | C6.9(C4xQ8) | 192,488 |
C6.10(C4xQ8) = C4xDic3:C4 | φ: C4xQ8/C42 → C2 ⊆ Aut C6 | 192 | | C6.10(C4xQ8) | 192,490 |
C6.11(C4xQ8) = (C2xC42).6S3 | φ: C4xQ8/C42 → C2 ⊆ Aut C6 | 192 | | C6.11(C4xQ8) | 192,492 |
C6.12(C4xQ8) = C4xC4:Dic3 | φ: C4xQ8/C42 → C2 ⊆ Aut C6 | 192 | | C6.12(C4xQ8) | 192,493 |
C6.13(C4xQ8) = Dic3:C42 | φ: C4xQ8/C4:C4 → C2 ⊆ Aut C6 | 192 | | C6.13(C4xQ8) | 192,208 |
C6.14(C4xQ8) = C6.(C4xD4) | φ: C4xQ8/C4:C4 → C2 ⊆ Aut C6 | 192 | | C6.14(C4xQ8) | 192,211 |
C6.15(C4xQ8) = C2.(C4xD12) | φ: C4xQ8/C4:C4 → C2 ⊆ Aut C6 | 192 | | C6.15(C4xQ8) | 192,212 |
C6.16(C4xQ8) = C42.27D6 | φ: C4xQ8/C4:C4 → C2 ⊆ Aut C6 | 192 | | C6.16(C4xQ8) | 192,387 |
C6.17(C4xQ8) = Dic6:C8 | φ: C4xQ8/C4:C4 → C2 ⊆ Aut C6 | 192 | | C6.17(C4xQ8) | 192,389 |
C6.18(C4xQ8) = C42.198D6 | φ: C4xQ8/C4:C4 → C2 ⊆ Aut C6 | 192 | | C6.18(C4xQ8) | 192,390 |
C6.19(C4xQ8) = C12:(C4:C4) | φ: C4xQ8/C4:C4 → C2 ⊆ Aut C6 | 192 | | C6.19(C4xQ8) | 192,531 |
C6.20(C4xQ8) = C4.(D6:C4) | φ: C4xQ8/C4:C4 → C2 ⊆ Aut C6 | 192 | | C6.20(C4xQ8) | 192,532 |
C6.21(C4xQ8) = Dic3xC4:C4 | φ: C4xQ8/C4:C4 → C2 ⊆ Aut C6 | 192 | | C6.21(C4xQ8) | 192,533 |
C6.22(C4xQ8) = Dic3:(C4:C4) | φ: C4xQ8/C4:C4 → C2 ⊆ Aut C6 | 192 | | C6.22(C4xQ8) | 192,535 |
C6.23(C4xQ8) = C6.67(C4xD4) | φ: C4xQ8/C4:C4 → C2 ⊆ Aut C6 | 192 | | C6.23(C4xQ8) | 192,537 |
C6.24(C4xQ8) = C4:C4:5Dic3 | φ: C4xQ8/C2xQ8 → C2 ⊆ Aut C6 | 192 | | C6.24(C4xQ8) | 192,539 |
C6.25(C4xQ8) = C4:C4:6Dic3 | φ: C4xQ8/C2xQ8 → C2 ⊆ Aut C6 | 192 | | C6.25(C4xQ8) | 192,543 |
C6.26(C4xQ8) = Q8xC3:C8 | φ: C4xQ8/C2xQ8 → C2 ⊆ Aut C6 | 192 | | C6.26(C4xQ8) | 192,582 |
C6.27(C4xQ8) = C42.210D6 | φ: C4xQ8/C2xQ8 → C2 ⊆ Aut C6 | 192 | | C6.27(C4xQ8) | 192,583 |
C6.28(C4xQ8) = (C6xQ8):7C4 | φ: C4xQ8/C2xQ8 → C2 ⊆ Aut C6 | 192 | | C6.28(C4xQ8) | 192,788 |
C6.29(C4xQ8) = C12xC4:C4 | central extension (φ=1) | 192 | | C6.29(C4xQ8) | 192,811 |
C6.30(C4xQ8) = C3xC23.63C23 | central extension (φ=1) | 192 | | C6.30(C4xQ8) | 192,820 |
C6.31(C4xQ8) = C3xC23.65C23 | central extension (φ=1) | 192 | | C6.31(C4xQ8) | 192,822 |
C6.32(C4xQ8) = C3xC23.67C23 | central extension (φ=1) | 192 | | C6.32(C4xQ8) | 192,824 |
C6.33(C4xQ8) = Q8xC24 | central extension (φ=1) | 192 | | C6.33(C4xQ8) | 192,878 |
C6.34(C4xQ8) = C3xC8:4Q8 | central extension (φ=1) | 192 | | C6.34(C4xQ8) | 192,879 |