Extensions 1→N→G→Q→1 with N=C3 and Q=D46D4

Direct product G=N×Q with N=C3 and Q=D46D4
dρLabelID
C3×D46D496C3xD4:6D4192,1436

Semidirect products G=N:Q with N=C3 and Q=D46D4
extensionφ:Q→Aut NdρLabelID
C31(D46D4) = C6.2- 1+4φ: D46D4/C2×C4⋊C4C2 ⊆ Aut C396C3:1(D4:6D4)192,1066
C32(D46D4) = D1224D4φ: D46D4/C4×D4C2 ⊆ Aut C396C3:2(D4:6D4)192,1110
C33(D46D4) = D46D12φ: D46D4/C4×D4C2 ⊆ Aut C396C3:3(D4:6D4)192,1114
C34(D46D4) = C6.732- 1+4φ: D46D4/C4⋊D4C2 ⊆ Aut C396C3:4(D4:6D4)192,1170
C35(D46D4) = D1222D4φ: D46D4/C22⋊Q8C2 ⊆ Aut C396C3:5(D4:6D4)192,1190
C36(D46D4) = C6.822- 1+4φ: D46D4/C22.D4C2 ⊆ Aut C396C3:6(D4:6D4)192,1214
C37(D46D4) = D1212D4φ: D46D4/C4⋊Q8C2 ⊆ Aut C396C3:7(D4:6D4)192,1285
C38(D46D4) = C6.1042- 1+4φ: D46D4/C2×C4○D4C2 ⊆ Aut C396C3:8(D4:6D4)192,1383


׿
×
𝔽