Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C4⋊Dic3

Direct product G=N×Q with N=C2 and Q=C2×C4⋊Dic3
dρLabelID
C22×C4⋊Dic3192C2^2xC4:Dic3192,1344


Non-split extensions G=N.Q with N=C2 and Q=C2×C4⋊Dic3
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C4⋊Dic3) = C2×C12⋊C8central extension (φ=1)192C2.1(C2xC4:Dic3)192,482
C2.2(C2×C4⋊Dic3) = C4×C4⋊Dic3central extension (φ=1)192C2.2(C2xC4:Dic3)192,493
C2.3(C2×C4⋊Dic3) = C2×C6.C42central extension (φ=1)192C2.3(C2xC4:Dic3)192,767
C2.4(C2×C4⋊Dic3) = C127M4(2)central stem extension (φ=1)96C2.4(C2xC4:Dic3)192,483
C2.5(C2×C4⋊Dic3) = C4210Dic3central stem extension (φ=1)192C2.5(C2xC4:Dic3)192,494
C2.6(C2×C4⋊Dic3) = C4211Dic3central stem extension (φ=1)192C2.6(C2xC4:Dic3)192,495
C2.7(C2×C4⋊Dic3) = C24.58D6central stem extension (φ=1)96C2.7(C2xC4:Dic3)192,509
C2.8(C2×C4⋊Dic3) = C4⋊C46Dic3central stem extension (φ=1)192C2.8(C2xC4:Dic3)192,543
C2.9(C2×C4⋊Dic3) = C42.43D6central stem extension (φ=1)96C2.9(C2xC4:Dic3)192,558
C2.10(C2×C4⋊Dic3) = C2×C8⋊Dic3central stem extension (φ=1)192C2.10(C2xC4:Dic3)192,663
C2.11(C2×C4⋊Dic3) = C2×C241C4central stem extension (φ=1)192C2.11(C2xC4:Dic3)192,664
C2.12(C2×C4⋊Dic3) = C23.27D12central stem extension (φ=1)96C2.12(C2xC4:Dic3)192,665
C2.13(C2×C4⋊Dic3) = C2×C24.C4central stem extension (φ=1)96C2.13(C2xC4:Dic3)192,666
C2.14(C2×C4⋊Dic3) = C23.52D12central stem extension (φ=1)96C2.14(C2xC4:Dic3)192,680
C2.15(C2×C4⋊Dic3) = C23.9Dic6central stem extension (φ=1)484C2.15(C2xC4:Dic3)192,684
C2.16(C2×C4⋊Dic3) = C24.75D6central stem extension (φ=1)96C2.16(C2xC4:Dic3)192,771

׿
×
𝔽