Extensions 1→N→G→Q→1 with N=C2×SD16 and Q=C6

Direct product G=N×Q with N=C2×SD16 and Q=C6
dρLabelID
C2×C6×SD1696C2xC6xSD16192,1459

Semidirect products G=N:Q with N=C2×SD16 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2×SD16)⋊1C6 = C3×C8⋊D4φ: C6/C3C2 ⊆ Out C2×SD1696(C2xSD16):1C6192,901
(C2×SD16)⋊2C6 = C3×D4.3D4φ: C6/C3C2 ⊆ Out C2×SD16484(C2xSD16):2C6192,904
(C2×SD16)⋊3C6 = C3×C83D4φ: C6/C3C2 ⊆ Out C2×SD1696(C2xSD16):3C6192,929
(C2×SD16)⋊4C6 = C6×C8⋊C22φ: C6/C3C2 ⊆ Out C2×SD1648(C2xSD16):4C6192,1462
(C2×SD16)⋊5C6 = C6×C8.C22φ: C6/C3C2 ⊆ Out C2×SD1696(C2xSD16):5C6192,1463
(C2×SD16)⋊6C6 = C3×D4○SD16φ: C6/C3C2 ⊆ Out C2×SD16484(C2xSD16):6C6192,1466
(C2×SD16)⋊7C6 = C3×Q8⋊D4φ: C6/C3C2 ⊆ Out C2×SD1696(C2xSD16):7C6192,881
(C2×SD16)⋊8C6 = C3×D4⋊D4φ: C6/C3C2 ⊆ Out C2×SD1696(C2xSD16):8C6192,882
(C2×SD16)⋊9C6 = C3×C22⋊SD16φ: C6/C3C2 ⊆ Out C2×SD1648(C2xSD16):9C6192,883
(C2×SD16)⋊10C6 = C3×D4.7D4φ: C6/C3C2 ⊆ Out C2×SD1696(C2xSD16):10C6192,885
(C2×SD16)⋊11C6 = C3×C4⋊SD16φ: C6/C3C2 ⊆ Out C2×SD1696(C2xSD16):11C6192,893
(C2×SD16)⋊12C6 = C3×D4.2D4φ: C6/C3C2 ⊆ Out C2×SD1696(C2xSD16):12C6192,896
(C2×SD16)⋊13C6 = C3×C88D4φ: C6/C3C2 ⊆ Out C2×SD1696(C2xSD16):13C6192,898
(C2×SD16)⋊14C6 = C3×C85D4φ: C6/C3C2 ⊆ Out C2×SD1696(C2xSD16):14C6192,925
(C2×SD16)⋊15C6 = C3×C8.12D4φ: C6/C3C2 ⊆ Out C2×SD1696(C2xSD16):15C6192,928
(C2×SD16)⋊16C6 = C6×C4○D8φ: trivial image96(C2xSD16):16C6192,1461

Non-split extensions G=N.Q with N=C2×SD16 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2×SD16).1C6 = C3×SD16⋊C4φ: C6/C3C2 ⊆ Out C2×SD1696(C2xSD16).1C6192,873
(C2×SD16).2C6 = C3×C8.2D4φ: C6/C3C2 ⊆ Out C2×SD1696(C2xSD16).2C6192,930
(C2×SD16).3C6 = C3×D4.D4φ: C6/C3C2 ⊆ Out C2×SD1696(C2xSD16).3C6192,894
(C2×SD16).4C6 = C3×Q8.D4φ: C6/C3C2 ⊆ Out C2×SD1696(C2xSD16).4C6192,897
(C2×SD16).5C6 = C12×SD16φ: trivial image96(C2xSD16).5C6192,871

׿
×
𝔽