Extensions 1→N→G→Q→1 with N=C2×Q16 and Q=C6

Direct product G=N×Q with N=C2×Q16 and Q=C6
dρLabelID
C2×C6×Q16192C2xC6xQ16192,1460

Semidirect products G=N:Q with N=C2×Q16 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2×Q16)⋊1C6 = C3×C22⋊Q16φ: C6/C3C2 ⊆ Out C2×Q1696(C2xQ16):1C6192,884
(C2×Q16)⋊2C6 = C3×D4.7D4φ: C6/C3C2 ⊆ Out C2×Q1696(C2xQ16):2C6192,885
(C2×Q16)⋊3C6 = C3×Q8.D4φ: C6/C3C2 ⊆ Out C2×Q1696(C2xQ16):3C6192,897
(C2×Q16)⋊4C6 = C3×C8.18D4φ: C6/C3C2 ⊆ Out C2×Q1696(C2xQ16):4C6192,900
(C2×Q16)⋊5C6 = C3×C8.12D4φ: C6/C3C2 ⊆ Out C2×Q1696(C2xQ16):5C6192,928
(C2×Q16)⋊6C6 = C6×SD32φ: C6/C3C2 ⊆ Out C2×Q1696(C2xQ16):6C6192,939
(C2×Q16)⋊7C6 = C3×C8.D4φ: C6/C3C2 ⊆ Out C2×Q1696(C2xQ16):7C6192,903
(C2×Q16)⋊8C6 = C3×D4.5D4φ: C6/C3C2 ⊆ Out C2×Q16964(C2xQ16):8C6192,906
(C2×Q16)⋊9C6 = C3×C8.2D4φ: C6/C3C2 ⊆ Out C2×Q1696(C2xQ16):9C6192,930
(C2×Q16)⋊10C6 = C3×Q32⋊C2φ: C6/C3C2 ⊆ Out C2×Q16964(C2xQ16):10C6192,943
(C2×Q16)⋊11C6 = C6×C8.C22φ: C6/C3C2 ⊆ Out C2×Q1696(C2xQ16):11C6192,1463
(C2×Q16)⋊12C6 = C3×Q8○D8φ: C6/C3C2 ⊆ Out C2×Q16964(C2xQ16):12C6192,1467
(C2×Q16)⋊13C6 = C6×C4○D8φ: trivial image96(C2xQ16):13C6192,1461

Non-split extensions G=N.Q with N=C2×Q16 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2×Q16).1C6 = C3×C2.Q32φ: C6/C3C2 ⊆ Out C2×Q16192(C2xQ16).1C6192,164
(C2×Q16).2C6 = C3×C42Q16φ: C6/C3C2 ⊆ Out C2×Q16192(C2xQ16).2C6192,895
(C2×Q16).3C6 = C3×C4⋊Q16φ: C6/C3C2 ⊆ Out C2×Q16192(C2xQ16).3C6192,927
(C2×Q16).4C6 = C6×Q32φ: C6/C3C2 ⊆ Out C2×Q16192(C2xQ16).4C6192,940
(C2×Q16).5C6 = C3×C8.17D4φ: C6/C3C2 ⊆ Out C2×Q16964(C2xQ16).5C6192,168
(C2×Q16).6C6 = C3×Q16⋊C4φ: C6/C3C2 ⊆ Out C2×Q16192(C2xQ16).6C6192,874
(C2×Q16).7C6 = C12×Q16φ: trivial image192(C2xQ16).7C6192,872

׿
×
𝔽