Extensions 1→N→G→Q→1 with N=S3×C8 and Q=C4

Direct product G=N×Q with N=S3×C8 and Q=C4
dρLabelID
S3×C4×C896S3xC4xC8192,243

Semidirect products G=N:Q with N=S3×C8 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3×C8)⋊1C4 = S3×C2.D8φ: C4/C2C2 ⊆ Out S3×C896(S3xC8):1C4192,438
(S3×C8)⋊2C4 = C8.27(C4×S3)φ: C4/C2C2 ⊆ Out S3×C896(S3xC8):2C4192,439
(S3×C8)⋊3C4 = S3×C4.Q8φ: C4/C2C2 ⊆ Out S3×C896(S3xC8):3C4192,418
(S3×C8)⋊4C4 = (S3×C8)⋊C4φ: C4/C2C2 ⊆ Out S3×C896(S3xC8):4C4192,419
(S3×C8)⋊5C4 = D6.C42φ: C4/C2C2 ⊆ Out S3×C896(S3xC8):5C4192,248
(S3×C8)⋊6C4 = S3×C8⋊C4φ: C4/C2C2 ⊆ Out S3×C896(S3xC8):6C4192,263
(S3×C8)⋊7C4 = D6.4C42φ: C4/C2C2 ⊆ Out S3×C896(S3xC8):7C4192,267

Non-split extensions G=N.Q with N=S3×C8 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3×C8).1C4 = S3×C8.C4φ: C4/C2C2 ⊆ Out S3×C8484(S3xC8).1C4192,451
(S3×C8).2C4 = C96⋊C2φ: C4/C2C2 ⊆ Out S3×C8962(S3xC8).2C4192,6
(S3×C8).3C4 = C2×D6.C8φ: C4/C2C2 ⊆ Out S3×C896(S3xC8).3C4192,459
(S3×C8).4C4 = S3×M5(2)φ: C4/C2C2 ⊆ Out S3×C8484(S3xC8).4C4192,465
(S3×C8).5C4 = S3×C32φ: trivial image962(S3xC8).5C4192,5
(S3×C8).6C4 = S3×C2×C16φ: trivial image96(S3xC8).6C4192,458

׿
×
𝔽