Extensions 1→N→G→Q→1 with N=C6 and Q=C4xC8

Direct product G=NxQ with N=C6 and Q=C4xC8
dρLabelID
C2xC4xC24192C2xC4xC24192,835

Semidirect products G=N:Q with N=C6 and Q=C4xC8
extensionφ:Q→Aut NdρLabelID
C6:1(C4xC8) = C2xC4xC3:C8φ: C4xC8/C42C2 ⊆ Aut C6192C6:1(C4xC8)192,479
C6:2(C4xC8) = Dic3xC2xC8φ: C4xC8/C2xC8C2 ⊆ Aut C6192C6:2(C4xC8)192,657

Non-split extensions G=N.Q with N=C6 and Q=C4xC8
extensionφ:Q→Aut NdρLabelID
C6.1(C4xC8) = C8xC3:C8φ: C4xC8/C42C2 ⊆ Aut C6192C6.1(C4xC8)192,12
C6.2(C4xC8) = C24:C8φ: C4xC8/C42C2 ⊆ Aut C6192C6.2(C4xC8)192,14
C6.3(C4xC8) = C4xC3:C16φ: C4xC8/C42C2 ⊆ Aut C6192C6.3(C4xC8)192,19
C6.4(C4xC8) = C24.C8φ: C4xC8/C42C2 ⊆ Aut C6192C6.4(C4xC8)192,20
C6.5(C4xC8) = (C2xC12):3C8φ: C4xC8/C42C2 ⊆ Aut C6192C6.5(C4xC8)192,83
C6.6(C4xC8) = C42.279D6φ: C4xC8/C2xC8C2 ⊆ Aut C6192C6.6(C4xC8)192,13
C6.7(C4xC8) = Dic3xC16φ: C4xC8/C2xC8C2 ⊆ Aut C6192C6.7(C4xC8)192,59
C6.8(C4xC8) = C48:10C4φ: C4xC8/C2xC8C2 ⊆ Aut C6192C6.8(C4xC8)192,61
C6.9(C4xC8) = (C2xC24):5C4φ: C4xC8/C2xC8C2 ⊆ Aut C6192C6.9(C4xC8)192,109
C6.10(C4xC8) = C3xC8:C8central extension (φ=1)192C6.10(C4xC8)192,128
C6.11(C4xC8) = C3xC22.7C42central extension (φ=1)192C6.11(C4xC8)192,142
C6.12(C4xC8) = C3xC16:5C4central extension (φ=1)192C6.12(C4xC8)192,152

׿
x
:
Z
F
o
wr
Q
<