Extensions 1→N→G→Q→1 with N=C2 and Q=C3×D4⋊C4

Direct product G=N×Q with N=C2 and Q=C3×D4⋊C4
dρLabelID
C6×D4⋊C496C6xD4:C4192,847


Non-split extensions G=N.Q with N=C2 and Q=C3×D4⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(C3×D4⋊C4) = C3×D4⋊C8central extension (φ=1)96C2.1(C3xD4:C4)192,131
C2.2(C3×D4⋊C4) = C3×C22.4Q16central extension (φ=1)192C2.2(C3xD4:C4)192,146
C2.3(C3×D4⋊C4) = C3×C22.SD16central stem extension (φ=1)48C2.3(C3xD4:C4)192,133
C2.4(C3×D4⋊C4) = C3×C4.D8central stem extension (φ=1)96C2.4(C3xD4:C4)192,137
C2.5(C3×D4⋊C4) = C3×C4.10D8central stem extension (φ=1)192C2.5(C3xD4:C4)192,138
C2.6(C3×D4⋊C4) = C3×C2.D16central stem extension (φ=1)96C2.6(C3xD4:C4)192,163
C2.7(C3×D4⋊C4) = C3×C2.Q32central stem extension (φ=1)192C2.7(C3xD4:C4)192,164
C2.8(C3×D4⋊C4) = C3×D8.C4central stem extension (φ=1)962C2.8(C3xD4:C4)192,165
C2.9(C3×D4⋊C4) = C3×D82C4central stem extension (φ=1)484C2.9(C3xD4:C4)192,166
C2.10(C3×D4⋊C4) = C3×M5(2)⋊C2central stem extension (φ=1)484C2.10(C3xD4:C4)192,167
C2.11(C3×D4⋊C4) = C3×C8.17D4central stem extension (φ=1)964C2.11(C3xD4:C4)192,168

׿
×
𝔽