Extensions 1→N→G→Q→1 with N=C2 and Q=D4.Dic3

Direct product G=N×Q with N=C2 and Q=D4.Dic3
dρLabelID
C2×D4.Dic396C2xD4.Dic3192,1377


Non-split extensions G=N.Q with N=C2 and Q=D4.Dic3
extensionφ:Q→Aut NdρLabelID
C2.1(D4.Dic3) = C12.5C42central extension (φ=1)96C2.1(D4.Dic3)192,556
C2.2(D4.Dic3) = D4×C3⋊C8central extension (φ=1)96C2.2(D4.Dic3)192,569
C2.3(D4.Dic3) = Q8×C3⋊C8central extension (φ=1)192C2.3(D4.Dic3)192,582
C2.4(D4.Dic3) = C42.43D6central stem extension (φ=1)96C2.4(D4.Dic3)192,558
C2.5(D4.Dic3) = C42.187D6central stem extension (φ=1)96C2.5(D4.Dic3)192,559
C2.6(D4.Dic3) = C42.47D6central stem extension (φ=1)96C2.6(D4.Dic3)192,570
C2.7(D4.Dic3) = C123M4(2)central stem extension (φ=1)96C2.7(D4.Dic3)192,571
C2.8(D4.Dic3) = C42.210D6central stem extension (φ=1)192C2.8(D4.Dic3)192,583
C2.9(D4.Dic3) = (C6×D4).11C4central stem extension (φ=1)96C2.9(D4.Dic3)192,793

׿
×
𝔽