Extensions 1→N→G→Q→1 with N=C8⋊S3 and Q=C4

Direct product G=N×Q with N=C8⋊S3 and Q=C4
dρLabelID
C4×C8⋊S396C4xC8:S3192,246

Semidirect products G=N:Q with N=C8⋊S3 and Q=C4
extensionφ:Q→Out NdρLabelID
C8⋊S31C4 = C8⋊(C4×S3)φ: C4/C2C2 ⊆ Out C8⋊S396C8:S3:1C4192,420
C8⋊S32C4 = C8⋊S3⋊C4φ: C4/C2C2 ⊆ Out C8⋊S396C8:S3:2C4192,440
C8⋊S33C4 = Dic35M4(2)φ: C4/C2C2 ⊆ Out C8⋊S396C8:S3:3C4192,266
C8⋊S34C4 = D6.4C42φ: C4/C2C2 ⊆ Out C8⋊S396C8:S3:4C4192,267
C8⋊S35C4 = D6.C42φ: trivial image96C8:S3:5C4192,248

Non-split extensions G=N.Q with N=C8⋊S3 and Q=C4
extensionφ:Q→Out NdρLabelID
C8⋊S3.1C4 = M4(2).25D6φ: C4/C2C2 ⊆ Out C8⋊S3484C8:S3.1C4192,452
C8⋊S3.2C4 = C16.12D6φ: C4/C2C2 ⊆ Out C8⋊S3964C8:S3.2C4192,466
C8⋊S3.3C4 = D12.4C8φ: trivial image962C8:S3.3C4192,460

׿
×
𝔽