extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1Dic6 = C12.(C4⋊C4) | φ: Dic6/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).1Dic6 | 192,89 |
(C2×C4).2Dic6 = C42⋊3Dic3 | φ: Dic6/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).2Dic6 | 192,90 |
(C2×C4).3Dic6 = (C2×C12).Q8 | φ: Dic6/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).3Dic6 | 192,92 |
(C2×C4).4Dic6 = M4(2)⋊Dic3 | φ: Dic6/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).4Dic6 | 192,113 |
(C2×C4).5Dic6 = (C2×C24)⋊C4 | φ: Dic6/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).5Dic6 | 192,115 |
(C2×C4).6Dic6 = C12.20C42 | φ: Dic6/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).6Dic6 | 192,116 |
(C2×C4).7Dic6 = M4(2)⋊4Dic3 | φ: Dic6/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).7Dic6 | 192,118 |
(C2×C4).8Dic6 = C6.(C4⋊Q8) | φ: Dic6/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).8Dic6 | 192,216 |
(C2×C4).9Dic6 = (C2×C4).Dic6 | φ: Dic6/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).9Dic6 | 192,219 |
(C2×C4).10Dic6 = (C22×C4).85D6 | φ: Dic6/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).10Dic6 | 192,220 |
(C2×C4).11Dic6 = C4⋊C4.225D6 | φ: Dic6/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).11Dic6 | 192,523 |
(C2×C4).12Dic6 = (C2×C12).54D4 | φ: Dic6/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).12Dic6 | 192,541 |
(C2×C4).13Dic6 = (C2×C12).55D4 | φ: Dic6/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).13Dic6 | 192,545 |
(C2×C4).14Dic6 = C4⋊C4.232D6 | φ: Dic6/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).14Dic6 | 192,554 |
(C2×C4).15Dic6 = C23.52D12 | φ: Dic6/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).15Dic6 | 192,680 |
(C2×C4).16Dic6 = C23.8Dic6 | φ: Dic6/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).16Dic6 | 192,683 |
(C2×C4).17Dic6 = C23.9Dic6 | φ: Dic6/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).17Dic6 | 192,684 |
(C2×C4).18Dic6 = C12.53D8 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).18Dic6 | 192,38 |
(C2×C4).19Dic6 = C12.39SD16 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).19Dic6 | 192,39 |
(C2×C4).20Dic6 = C6.(C4×Q8) | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).20Dic6 | 192,206 |
(C2×C4).21Dic6 = C2.(C4×Dic6) | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).21Dic6 | 192,213 |
(C2×C4).22Dic6 = Dic3⋊C4⋊C4 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).22Dic6 | 192,214 |
(C2×C4).23Dic6 = C12.C42 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).23Dic6 | 192,88 |
(C2×C4).24Dic6 = C12.2C42 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).24Dic6 | 192,91 |
(C2×C4).25Dic6 = C12.3C42 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).25Dic6 | 192,114 |
(C2×C4).26Dic6 = C2×C6.Q16 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).26Dic6 | 192,521 |
(C2×C4).27Dic6 = C2×C12.Q8 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).27Dic6 | 192,522 |
(C2×C4).28Dic6 = C12⋊(C4⋊C4) | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).28Dic6 | 192,531 |
(C2×C4).29Dic6 = (C4×Dic3)⋊8C4 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).29Dic6 | 192,534 |
(C2×C4).30Dic6 = (C4×Dic3)⋊9C4 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).30Dic6 | 192,536 |
(C2×C4).31Dic6 = C4⋊C4⋊6Dic3 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).31Dic6 | 192,543 |
(C2×C4).32Dic6 = C4⋊C4.234D6 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).32Dic6 | 192,557 |
(C2×C4).33Dic6 = C42.43D6 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).33Dic6 | 192,558 |
(C2×C4).34Dic6 = Dic3⋊4M4(2) | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).34Dic6 | 192,677 |
(C2×C4).35Dic6 = C12.88(C2×Q8) | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).35Dic6 | 192,678 |
(C2×C4).36Dic6 = C2×C12.53D4 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).36Dic6 | 192,682 |
(C2×C4).37Dic6 = C2×C4.Dic6 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).37Dic6 | 192,1058 |
(C2×C4).38Dic6 = C24⋊2C8 | φ: Dic6/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).38Dic6 | 192,16 |
(C2×C4).39Dic6 = C24⋊1C8 | φ: Dic6/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).39Dic6 | 192,17 |
(C2×C4).40Dic6 = C12⋊4(C4⋊C4) | φ: Dic6/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).40Dic6 | 192,487 |
(C2×C4).41Dic6 = (C2×C42).6S3 | φ: Dic6/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).41Dic6 | 192,492 |
(C2×C4).42Dic6 = C12.8C42 | φ: Dic6/C12 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).42Dic6 | 192,82 |
(C2×C4).43Dic6 = C12.9C42 | φ: Dic6/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).43Dic6 | 192,110 |
(C2×C4).44Dic6 = C12⋊7M4(2) | φ: Dic6/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).44Dic6 | 192,483 |
(C2×C4).45Dic6 = C42⋊10Dic3 | φ: Dic6/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).45Dic6 | 192,494 |
(C2×C4).46Dic6 = C42⋊11Dic3 | φ: Dic6/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).46Dic6 | 192,495 |
(C2×C4).47Dic6 = Dic3⋊C8⋊C2 | φ: Dic6/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).47Dic6 | 192,661 |
(C2×C4).48Dic6 = C2×C8⋊Dic3 | φ: Dic6/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).48Dic6 | 192,663 |
(C2×C4).49Dic6 = C2×C24⋊1C4 | φ: Dic6/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).49Dic6 | 192,664 |
(C2×C4).50Dic6 = C23.27D12 | φ: Dic6/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).50Dic6 | 192,665 |
(C2×C4).51Dic6 = C2×C24.C4 | φ: Dic6/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).51Dic6 | 192,666 |
(C2×C4).52Dic6 = C2×C12.6Q8 | φ: Dic6/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).52Dic6 | 192,1028 |
(C2×C4).53Dic6 = (C2×C12)⋊3C8 | central extension (φ=1) | 192 | | (C2xC4).53Dic6 | 192,83 |
(C2×C4).54Dic6 = (C2×C24)⋊5C4 | central extension (φ=1) | 192 | | (C2xC4).54Dic6 | 192,109 |
(C2×C4).55Dic6 = C2×C12⋊C8 | central extension (φ=1) | 192 | | (C2xC4).55Dic6 | 192,482 |
(C2×C4).56Dic6 = C4×Dic3⋊C4 | central extension (φ=1) | 192 | | (C2xC4).56Dic6 | 192,490 |
(C2×C4).57Dic6 = C4×C4⋊Dic3 | central extension (φ=1) | 192 | | (C2xC4).57Dic6 | 192,493 |
(C2×C4).58Dic6 = C2×Dic3⋊C8 | central extension (φ=1) | 192 | | (C2xC4).58Dic6 | 192,658 |