Extensions 1→N→G→Q→1 with N=C2 and Q=C3×C4.4D4

Direct product G=N×Q with N=C2 and Q=C3×C4.4D4
dρLabelID
C6×C4.4D496C6xC4.4D4192,1415


Non-split extensions G=N.Q with N=C2 and Q=C3×C4.4D4
extensionφ:Q→Aut NdρLabelID
C2.1(C3×C4.4D4) = C3×C428C4central extension (φ=1)192C2.1(C3xC4.4D4)192,815
C2.2(C3×C4.4D4) = C3×C24.C22central extension (φ=1)96C2.2(C3xC4.4D4)192,821
C2.3(C3×C4.4D4) = C3×C24.3C22central extension (φ=1)96C2.3(C3xC4.4D4)192,823
C2.4(C3×C4.4D4) = C3×C23.67C23central extension (φ=1)192C2.4(C3xC4.4D4)192,824
C2.5(C3×C4.4D4) = C3×C23⋊Q8central stem extension (φ=1)96C2.5(C3xC4.4D4)192,826
C2.6(C3×C4.4D4) = C3×C23.10D4central stem extension (φ=1)96C2.6(C3xC4.4D4)192,827
C2.7(C3×C4.4D4) = C3×C23.11D4central stem extension (φ=1)96C2.7(C3xC4.4D4)192,830
C2.8(C3×C4.4D4) = C3×C23.83C23central stem extension (φ=1)192C2.8(C3xC4.4D4)192,833
C2.9(C3×C4.4D4) = C3×C4.4D8central stem extension (φ=1)96C2.9(C3xC4.4D4)192,919
C2.10(C3×C4.4D4) = C3×C4.SD16central stem extension (φ=1)192C2.10(C3xC4.4D4)192,920
C2.11(C3×C4.4D4) = C3×C42.78C22central stem extension (φ=1)96C2.11(C3xC4.4D4)192,921
C2.12(C3×C4.4D4) = C3×C42.28C22central stem extension (φ=1)96C2.12(C3xC4.4D4)192,922
C2.13(C3×C4.4D4) = C3×C42.29C22central stem extension (φ=1)96C2.13(C3xC4.4D4)192,923
C2.14(C3×C4.4D4) = C3×C42.30C22central stem extension (φ=1)192C2.14(C3xC4.4D4)192,924

׿
×
𝔽