Extensions 1→N→G→Q→1 with N=C2 and Q=C6xM4(2)

Direct product G=NxQ with N=C2 and Q=C6xM4(2)
dρLabelID
C2xC6xM4(2)96C2xC6xM4(2)192,1455


Non-split extensions G=N.Q with N=C2 and Q=C6xM4(2)
extensionφ:Q→Aut NdρLabelID
C2.1(C6xM4(2)) = C6xC8:C4central extension (φ=1)192C2.1(C6xM4(2))192,836
C2.2(C6xM4(2)) = C12xM4(2)central extension (φ=1)96C2.2(C6xM4(2))192,837
C2.3(C6xM4(2)) = C6xC22:C8central extension (φ=1)96C2.3(C6xM4(2))192,839
C2.4(C6xM4(2)) = C6xC4:C8central extension (φ=1)192C2.4(C6xM4(2))192,855
C2.5(C6xM4(2)) = C3xC42.12C4central extension (φ=1)96C2.5(C6xM4(2))192,864
C2.6(C6xM4(2)) = C3xC24.4C4central stem extension (φ=1)48C2.6(C6xM4(2))192,840
C2.7(C6xM4(2)) = C3xC4:M4(2)central stem extension (φ=1)96C2.7(C6xM4(2))192,856
C2.8(C6xM4(2)) = C3xC42.6C4central stem extension (φ=1)96C2.8(C6xM4(2))192,865
C2.9(C6xM4(2)) = C3xC8:9D4central stem extension (φ=1)96C2.9(C6xM4(2))192,868
C2.10(C6xM4(2)) = C3xC8:6D4central stem extension (φ=1)96C2.10(C6xM4(2))192,869
C2.11(C6xM4(2)) = C3xC8:4Q8central stem extension (φ=1)192C2.11(C6xM4(2))192,879

׿
x
:
Z
F
o
wr
Q
<