Extensions 1→N→G→Q→1 with N=C2 and Q=C6×SD16

Direct product G=N×Q with N=C2 and Q=C6×SD16
dρLabelID
C2×C6×SD1696C2xC6xSD16192,1459


Non-split extensions G=N.Q with N=C2 and Q=C6×SD16
extensionφ:Q→Aut NdρLabelID
C2.1(C6×SD16) = C6×D4⋊C4central extension (φ=1)96C2.1(C6xSD16)192,847
C2.2(C6×SD16) = C6×Q8⋊C4central extension (φ=1)192C2.2(C6xSD16)192,848
C2.3(C6×SD16) = C6×C4.Q8central extension (φ=1)192C2.3(C6xSD16)192,858
C2.4(C6×SD16) = C12×SD16central extension (φ=1)96C2.4(C6xSD16)192,871
C2.5(C6×SD16) = C3×Q8⋊D4central stem extension (φ=1)96C2.5(C6xSD16)192,881
C2.6(C6×SD16) = C3×C22⋊SD16central stem extension (φ=1)48C2.6(C6xSD16)192,883
C2.7(C6×SD16) = C3×C4⋊SD16central stem extension (φ=1)96C2.7(C6xSD16)192,893
C2.8(C6×SD16) = C3×D4.D4central stem extension (φ=1)96C2.8(C6xSD16)192,894
C2.9(C6×SD16) = C3×C88D4central stem extension (φ=1)96C2.9(C6xSD16)192,898
C2.10(C6×SD16) = C3×Q8⋊Q8central stem extension (φ=1)192C2.10(C6xSD16)192,908
C2.11(C6×SD16) = C3×D42Q8central stem extension (φ=1)96C2.11(C6xSD16)192,909
C2.12(C6×SD16) = C3×C23.46D4central stem extension (φ=1)96C2.12(C6xSD16)192,914
C2.13(C6×SD16) = C3×C23.47D4central stem extension (φ=1)96C2.13(C6xSD16)192,916
C2.14(C6×SD16) = C3×C4.4D8central stem extension (φ=1)96C2.14(C6xSD16)192,919
C2.15(C6×SD16) = C3×C4.SD16central stem extension (φ=1)192C2.15(C6xSD16)192,920
C2.16(C6×SD16) = C3×C85D4central stem extension (φ=1)96C2.16(C6xSD16)192,925
C2.17(C6×SD16) = C3×C83Q8central stem extension (φ=1)192C2.17(C6xSD16)192,931

׿
×
𝔽