Extensions 1→N→G→Q→1 with N=C2 and Q=C6xSD16

Direct product G=NxQ with N=C2 and Q=C6xSD16
dρLabelID
C2xC6xSD1696C2xC6xSD16192,1459


Non-split extensions G=N.Q with N=C2 and Q=C6xSD16
extensionφ:Q→Aut NdρLabelID
C2.1(C6xSD16) = C6xD4:C4central extension (φ=1)96C2.1(C6xSD16)192,847
C2.2(C6xSD16) = C6xQ8:C4central extension (φ=1)192C2.2(C6xSD16)192,848
C2.3(C6xSD16) = C6xC4.Q8central extension (φ=1)192C2.3(C6xSD16)192,858
C2.4(C6xSD16) = C12xSD16central extension (φ=1)96C2.4(C6xSD16)192,871
C2.5(C6xSD16) = C3xQ8:D4central stem extension (φ=1)96C2.5(C6xSD16)192,881
C2.6(C6xSD16) = C3xC22:SD16central stem extension (φ=1)48C2.6(C6xSD16)192,883
C2.7(C6xSD16) = C3xC4:SD16central stem extension (φ=1)96C2.7(C6xSD16)192,893
C2.8(C6xSD16) = C3xD4.D4central stem extension (φ=1)96C2.8(C6xSD16)192,894
C2.9(C6xSD16) = C3xC8:8D4central stem extension (φ=1)96C2.9(C6xSD16)192,898
C2.10(C6xSD16) = C3xQ8:Q8central stem extension (φ=1)192C2.10(C6xSD16)192,908
C2.11(C6xSD16) = C3xD4:2Q8central stem extension (φ=1)96C2.11(C6xSD16)192,909
C2.12(C6xSD16) = C3xC23.46D4central stem extension (φ=1)96C2.12(C6xSD16)192,914
C2.13(C6xSD16) = C3xC23.47D4central stem extension (φ=1)96C2.13(C6xSD16)192,916
C2.14(C6xSD16) = C3xC4.4D8central stem extension (φ=1)96C2.14(C6xSD16)192,919
C2.15(C6xSD16) = C3xC4.SD16central stem extension (φ=1)192C2.15(C6xSD16)192,920
C2.16(C6xSD16) = C3xC8:5D4central stem extension (φ=1)96C2.16(C6xSD16)192,925
C2.17(C6xSD16) = C3xC8:3Q8central stem extension (φ=1)192C2.17(C6xSD16)192,931

׿
x
:
Z
F
o
wr
Q
<