Extensions 1→N→G→Q→1 with N=C2 and Q=C4⋊D12

Direct product G=N×Q with N=C2 and Q=C4⋊D12
dρLabelID
C2×C4⋊D1296C2xC4:D12192,1034


Non-split extensions G=N.Q with N=C2 and Q=C4⋊D12
extensionφ:Q→Aut NdρLabelID
C2.1(C4⋊D12) = C4210Dic3central extension (φ=1)192C2.1(C4:D12)192,494
C2.2(C4⋊D12) = (C2×C4)⋊6D12central extension (φ=1)96C2.2(C4:D12)192,498
C2.3(C4⋊D12) = (C2×C12)⋊5D4central stem extension (φ=1)96C2.3(C4:D12)192,230
C2.4(C4⋊D12) = (C2×C12).33D4central stem extension (φ=1)96C2.4(C4:D12)192,236
C2.5(C4⋊D12) = C85D12central stem extension (φ=1)96C2.5(C4:D12)192,252
C2.6(C4⋊D12) = C124D8central stem extension (φ=1)96C2.6(C4:D12)192,254
C2.7(C4⋊D12) = C8.8D12central stem extension (φ=1)96C2.7(C4:D12)192,255
C2.8(C4⋊D12) = C124Q16central stem extension (φ=1)192C2.8(C4:D12)192,258
C2.9(C4⋊D12) = C8⋊D12central stem extension (φ=1)96C2.9(C4:D12)192,271
C2.10(C4⋊D12) = C8.D12central stem extension (φ=1)96C2.10(C4:D12)192,274

׿
×
𝔽