Extensions 1→N→G→Q→1 with N=C4×S3 and Q=Q8

Direct product G=N×Q with N=C4×S3 and Q=Q8
dρLabelID
C4×S3×Q896C4xS3xQ8192,1130

Semidirect products G=N:Q with N=C4×S3 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1Q8 = C42.148D6φ: Q8/C2C22 ⊆ Out C4×S396(C4xS3):1Q8192,1248
(C4×S3)⋊2Q8 = C42.174D6φ: Q8/C2C22 ⊆ Out C4×S396(C4xS3):2Q8192,1288
(C4×S3)⋊3Q8 = C42.236D6φ: Q8/C4C2 ⊆ Out C4×S396(C4xS3):3Q8192,1247
(C4×S3)⋊4Q8 = S3×C4⋊Q8φ: Q8/C4C2 ⊆ Out C4×S396(C4xS3):4Q8192,1282
(C4×S3)⋊5Q8 = C42.241D6φ: Q8/C4C2 ⊆ Out C4×S396(C4xS3):5Q8192,1287
(C4×S3)⋊6Q8 = C42.232D6φ: Q8/C4C2 ⊆ Out C4×S396(C4xS3):6Q8192,1137

Non-split extensions G=N.Q with N=C4×S3 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C4×S3).1Q8 = C8⋊(C4×S3)φ: Q8/C2C22 ⊆ Out C4×S396(C4xS3).1Q8192,420
(C4×S3).2Q8 = C8⋊S3⋊C4φ: Q8/C2C22 ⊆ Out C4×S396(C4xS3).2Q8192,440
(C4×S3).3Q8 = S3×C4.Q8φ: Q8/C4C2 ⊆ Out C4×S396(C4xS3).3Q8192,418
(C4×S3).4Q8 = (S3×C8)⋊C4φ: Q8/C4C2 ⊆ Out C4×S396(C4xS3).4Q8192,419
(C4×S3).5Q8 = S3×C2.D8φ: Q8/C4C2 ⊆ Out C4×S396(C4xS3).5Q8192,438
(C4×S3).6Q8 = C8.27(C4×S3)φ: Q8/C4C2 ⊆ Out C4×S396(C4xS3).6Q8192,439
(C4×S3).7Q8 = S3×C42.C2φ: Q8/C4C2 ⊆ Out C4×S396(C4xS3).7Q8192,1246
(C4×S3).8Q8 = C12⋊M4(2)φ: Q8/C4C2 ⊆ Out C4×S396(C4xS3).8Q8192,396
(C4×S3).9Q8 = C42.30D6φ: Q8/C4C2 ⊆ Out C4×S396(C4xS3).9Q8192,398
(C4×S3).10Q8 = S3×C4⋊C8φ: trivial image96(C4xS3).10Q8192,391

׿
×
𝔽