Extensions 1→N→G→Q→1 with N=C2 and Q=C4.Dic6

Direct product G=N×Q with N=C2 and Q=C4.Dic6
dρLabelID
C2×C4.Dic6192C2xC4.Dic6192,1058


Non-split extensions G=N.Q with N=C2 and Q=C4.Dic6
extensionφ:Q→Aut NdρLabelID
C2.1(C4.Dic6) = C2.(C4×Dic6)central extension (φ=1)192C2.1(C4.Dic6)192,213
C2.2(C4.Dic6) = Dic3⋊C4⋊C4central extension (φ=1)192C2.2(C4.Dic6)192,214
C2.3(C4.Dic6) = C12⋊(C4⋊C4)central extension (φ=1)192C2.3(C4.Dic6)192,531
C2.4(C4.Dic6) = (C4×Dic3)⋊9C4central extension (φ=1)192C2.4(C4.Dic6)192,536
C2.5(C4.Dic6) = C4⋊C46Dic3central extension (φ=1)192C2.5(C4.Dic6)192,543
C2.6(C4.Dic6) = (C2×C4).Dic6central stem extension (φ=1)192C2.6(C4.Dic6)192,219
C2.7(C4.Dic6) = (C22×C4).85D6central stem extension (φ=1)192C2.7(C4.Dic6)192,220
C2.8(C4.Dic6) = (C2×C12).54D4central stem extension (φ=1)192C2.8(C4.Dic6)192,541
C2.9(C4.Dic6) = (C2×C12).55D4central stem extension (φ=1)192C2.9(C4.Dic6)192,545

׿
×
𝔽